2. 中国石油大港油田分公司勘探开发研究院 天津 300280
2. Research Institute of Exploration and Development, PetroChina Dagang Oilfield Company, Tianjin 300280, China
埕海斜坡紧邻歧口生烃凹陷,具有继承性古隆起构造背景,是油气运移的重要指向区[1-3]。近年来,在歧口凹陷埕海斜坡油藏的勘探已取得显著成果,赵东、埕海、刘官庄、羊二庄、友谊等多个油田已成为歧口凹陷油气勘探的热点。众多学者在该研究区油气成藏方面已作了大量研究工作,且取得了丰硕成果。于学敏等[4]以“富烃源岩生烃理论”为指导,对烃源岩进行分级评价,并认为岐口生烃凹陷具有“持续生油,集中生气”的特征;蒲秀刚等[5]、Bloch等[6]、赵贤正等[7]认为斜坡区储层砂体分布具有“物源供砂,沟槽输砂,坡折控砂,源型聚砂”的内在机制,进而指出斜坡区古近系地层是油气勘探的有利区域;高长海等[8-10]在结合测井曲线组合对比分析和岩心观察的基础上,认为埕海斜坡油气运移通道主要为断层和不整合两大输导体系,其不仅是油气运移的重要通道,还是油气聚集的有利场所;蒲秀刚等[11-12]、袁淑琴等[13]应用单因素叠合分析的思路,在构造—砂体—成藏综合研究的基础上,提出了“三元耦合”控藏机制,即油源,储集层物性和有效的圈闭是黄骅坳陷油气控藏的主要因素。
以往研究成果虽然指导了埕海斜坡的勘探开发并取得了较大进展,但随着勘探程度的不断深入,发现不同区块其油气富集程度不同,主要表现为横向上,斜坡中部可采油藏相对富集,斜坡高部位次之,斜坡低部位最差;纵向上,沙河街组油藏较为富集,明化镇组、馆陶组富集程度较差。这些问题均制约着研究区未来的油气勘探进展,因此,在埕海斜坡不同区带展开油藏差异聚集主控因素研究,是现阶段在埕海斜坡扩大勘探成果,并寻找剩余油气资源的重要研究课题。本次研究从构造地质背景入手,运用主控因素富集理论,分析有利沉积相,研究断裂活动和油气成藏事件关系,结合埕海斜坡不同部位的分异特征,着重研究不同区块成藏的主控因素,以期指导下一步的油气勘探。
1 地质概况埕海斜坡位于渤海湾盆地黄骅坳陷中北部,是北部歧口凹陷向南部埕宁隆起过渡的一个斜坡。北起歧中断层,南至埕宁隆起边缘,西部以张北断层为界与歧南斜坡相邻,东到大港矿区边界,勘探面积约1 200 km2。歧东断层以北至凹陷中心是埕海斜坡低部位区,羊二庄断层以北至歧东断层以南是斜坡中部,羊二庄断层以南至埕宁隆起是斜坡高部位区(图 1a)。研究区地层自上而下为新近系馆陶组,古近系东营组、沙河街组一段(沙一段)、沙河街组二段(沙二段)和沙河街组三段(沙三段)(图 1b)。沙三段与中生界地层呈不整合接触,该层段为主力烃源岩层,发育暗色泥岩,以正旋回为主,该层油气藏主要分布在张东断层、赵北断层、羊二庄断层附近。沙二段处于滨浅湖沉积环境,岩性以细砂岩、含砾砂岩为主,受南部埕宁隆起基地抬升影响,砂体具北厚南薄的特征,集中分布在张东断层和赵北断层附近。沙一下亚段发育第二套烃源岩,岩性以油页岩、泥质白云岩、泥质砂岩为主,沙一中亚段发育本区区域性盖层,为大面积泥岩砂岩互层,沙一上亚段岩性以细砂岩和暗色泥岩为主。东营组处于湖盆萎缩阶段,地层呈反旋回特征,岩性为暗色泥岩夹细砂岩、粉砂岩。新近纪,渤海湾盆地进入坳陷阶段,区域上可分为粗、细、粗3段,埕海斜坡区缺失下部粗段,整体为上粗、下细,上部岩性为灰色砂砾岩夹灰绿色泥岩,下部岩性为灰绿色泥岩与灰色砂岩互层。埕海三区油藏主要分布在沙二段地层,埕海一区和埕海二区的油藏在各个层段均有分布,斜坡高部位油田主要分布在馆陶组和东营组。
埕海斜坡北邻歧口生烃凹陷,发育沙三段、沙二段、沙一段及东营组4套泥质烃源岩,其中沙三段和沙一段为主力烃源岩,有机质类型以Ⅱ1型和Ⅱ2型为主,Ⅰ型和Ⅲ型较少。相对而言,沙一段有机质类型最好,沙三段和东营组次之(图 2)。沙一段和沙三段有机质丰度好,沙一段有机碳质量分数(TOC)平均为1.65%~2.05%,生烃潜量(S1+ S2)为196.3~259.5 kg/t;沙三段TOC平均为1.91%,(S1+ S2)为105.2 kg/t[14](表 1)。埕海斜坡各层段实测镜质组反射率(Ro)为0.5%~1.3%(低熟—成熟阶段),歧口主凹中心实测Ro为1.3%~1.9%(高成熟阶段)
研究区自上而下发育古近系沙河街组、东营组,新近系馆陶组和明化镇组4套储层,本文以沙二段为例研究埕海斜坡储层物性特征。根据岩石物性和薄片资料鉴定,通过多因素综合分析,对沙二段储层物性进行初步评价。
2.2.1 储层岩石学特征埕海地区沙二段主要受西部羊三木物源和南部埕宁隆起物源控制。根据埕海斜坡沙二段30口井165块埕海地区沙二段岩石薄片资料,认为该段岩石类型主要为石英砂岩、长石砂岩、岩屑长石砂岩、长石岩屑砂岩等4种类型[15-17](图 3)。埕海地区沙二段碎屑颗粒以细粒和中细粒为主,见粉砂。碎屑颗粒分选性好或中等偏好,颗粒磨圆度较好,多为次圆或次尖—次圆状。颗粒接触关系以线、长线为主,局部可见凹凸接触。胶结类型以孔隙式胶结为主,部分接触式胶结,支撑关系见方解石支撑、过渡支撑和颗粒支撑。
埕海地区沙二段储层孔隙类型与歧口凹陷总体一致[18-19],发育粒间溶蚀孔、粒内溶蚀孔、颗粒铸膜孔、胶结物内溶蚀孔及构造裂缝等5种类型[20-21](图 4)。其中以粒间溶蚀孔、粒内溶蚀孔、颗粒铸膜孔3种孔隙类型最为常见,约占90%,溶蚀岩石组分主要是方解石、长石和岩屑。
埕海地区沙二段岩石物性资料表明,储集空间类型纵向分布特征受成岩作用影响较大[22-23](图 5)。2 700 m之上的地层主要为中高孔高渗带,属原生孔隙发育段;3 000~3 300 m受溶蚀作用影响,出现中高孔中高渗带,为第1个次生孔隙发育段;3 500~3 700 m为中孔中低渗储层,为第2个次生孔隙发育段;3 700 m之下随埋深增加,孔隙度和渗透率递减速率较快,多发育低孔低渗、低孔超低渗储层。
钻井数据显示,歧口凹陷生烃系统属于异常高压系统,而埕宁隆起属于正常压力系压差排烃为油气运移提供了条件[24]。油气从流体势高的位置向流体势低的位置运移[13, 25](图 6),且油气二次运移的主要动力是浮力,该区北低南高的构造形态为油气的运移提供了条件,从而决定了油藏在平面上的分布。
研究区圈闭类型主要为断层-岩性圈闭、岩性圈闭和岩性-地层圈闭[26](图 7)。在斜坡高部位,古河道砂体和盖层耦合为岩性圈闭,岩性为主导因素。斜坡高部位发育辫状河沉积相,储层物性好,后期经历湖侵,沉积泥岩盖层,形成古河道砂体圈闭,分布在刘官庄油田和埕海一区;湖盆边缘发育辫状河三角洲前缘亚相,沉积砂体超覆于不整合面之上,并被泥岩遮盖,形成地层超覆圈闭,发育在斜坡高部位刘官庄油田。在斜坡中部,储层、盖层和断层耦合为断层-岩性圈闭,断层为主导因素。储层受构造运动影响,原本的油气运移通道被断层封闭遮挡,形成多种类型的断层-岩性圈闭,如反Y凹型圈闭,反Y凸型圈闭,断阶同向型圈闭和断阶反向型圈闭。反Y凹型圈闭是2条断裂穿过地层形成反Y状,由于断层挤压运动,地层在Y字中心呈凹型,油气沿储层横向运移,遇到断层阻断油气原本的运移路径,并在断层下降盘聚集成藏;反Y凸型圈闭是2条断裂穿过地层形成反Y状,由于断层挤压运动,地层在Y字中心呈凸型,油气沿储层横向运移,遇到断层阻断油气原本的运移路径,并在断层下降盘聚集成藏;断阶同向型断裂组合为阶梯状下降式,储层倾向与断面倾向一致,油气沿开启的断层垂直运输,在断层封闭段聚集成藏,这种情况油藏一般分布在断层上盘;断阶反向型断裂组合为阶梯状下降式,储层倾向与断面倾向相反,来自歧口凹陷的油气沿开启性断层垂直运输,在断层封闭段聚集成藏,这种情况油藏一般分布在断层下盘。研究区大部分油气都在断层-岩性圈闭中得以保存,断层-岩性圈闭在区内分布最广,占圈闭总数的90% 以上,在埕海三区、埕海二区和埕海一区均有分布。斜坡低部位接近湖盆中心位置,沉积的泥质砂岩层层超覆,形成透镜状岩性圈闭,所以斜坡低部位油藏主要分布在储层条件好的区块。
埕海斜坡不同构造部位成藏分异性很大[27-30](图 8)。斜坡高部位成藏优势是发育辫状河三角洲平原和辫状河三角洲前缘亚相,储层条件良好;劣势是由于斜坡高部位处于正常压力系统,油气远源运输,从而导致该区供烃量不足。油气通过断层和不整合面,连通砂体运移至斜坡高部位并在先天的优质储层中保存,多形成地层超覆油藏[31]和古河道砂体岩性油气藏[32]。斜坡中部近源成藏,为弱高压系统,供烃量较为充足,发育辫状河三角洲前缘亚相,相较于斜坡区其他区块,油藏的形成大多受断层影响。羊二庄断层、赵北断层、张东断层、歧东断层节节下降,为油气的运移提供运移通道,同时油气在遇到断层的封闭段时,断层又为油气聚集提供良好的圈闭条件使油气得以保存,从而形成断层-岩性油藏[33]。斜坡低部位源内成藏,处于一场高压系统,是供烃量最充足的区块,发育远岸水下扇沉积相,多为透镜状岩性油气藏。
在油源对比方面,埕海斜坡油气主要来自于歧口主凹和歧南次凹,相同层系的烃源岩地球化学特征十分类似,油气分布“源控”特征比较明显[34](表 2)。歧口凹陷沙一段和沙三段优质烃源岩发育,有机质类型丰富,热演化程度适中,油气资源富集,这些特征对油气成藏具有明显的控制作用。油气在平面上的分布受有机质和热演化程度的影响十分明显,距离凹陷越近的区块有机碳丰度越高,供烃量越充足;凹陷中心热演化程度高,凹陷周围斜坡演化程度适中。横向上,自北向南原油物性明显变差(密度和黏度逐渐增加,含蜡量、沥青+胶质以及含硫量、凝固点逐渐降低);纵向上,原油物性具有密度下轻上重、含蜡量下大上小的特征。
不整合面侧向疏导体系和连通砂体侧向疏导体系共同构成斜坡高部位主要的油气疏导体系,为斜坡高部位油气成藏提供必要条件。
不整合面经过长期的风化剥蚀和淋滤作用,孔隙度增大,孔隙度之间的连通性有所增强,有利于油气的运移[35-36]。不整合面纵向上发育3层结构(不整合面之上的底砾石、中间的风化粘土层和下段的半风化岩石),为油气平面上的侧向运移提供双重油气运移通道。斜坡高部位不整合面主要由超覆不整合形成,羊二庄以南Z37-43井、ZQ37-38井馆陶组地层超覆油藏的形成和超覆不整合输导体系有关(图 9)。
连通砂体作为运移通道在油气运移至斜坡高部位的过程中具有重要作用[37]。新近系馆陶组为辫状河道沉积微相,河道砂岩物性极好,孔隙度普遍在22% 以上,渗透率高于300 mD,ZQ33-41井、L3-16井、ZQ45-50井馆陶组古河道砂体岩性油藏的形成也和河道砂体连通性好有关(图 10)。
断层在油气成藏过程中既有封闭性也有输导性[38]。断层的活动性、断层与有效烃源岩的空间配置关系、烃源岩的生排烃时期与断层活动期的匹配关系均对断层的疏导性具有一定影响[39-40]。研究区二级断层除羊二庄、赵北和扣村断层外,其他大规模断层均断至沙三段,穿过多套烃源岩。张东—海4井、羊二庄、赵北、羊二庄南等为主要的控烃断层[41]。在平面上不同位置的断层其走向不同,呈“S”型分布。通过对研究区油气宏观分布规律的分析发现,油气主要富集在断层北东段的两侧,断层的展布方向与油气富集规律具有良好的相关性(参见图 1)。在油气生排烃时期活动的断层,在垂向上通常具有开启性,方便深层油气沿断裂垂向运输至浅层聚集成藏。当断层已经停止活动或者活动较弱时,油气进入生排烃时期,断层的垂向运输能力较差,油气通常能够得到很好地保存。埕海断阶区发生3期大规模断层活动(图 11)。第1期断层活动强度最大,但沙三段烃源岩油气的排烃作用尚未发生,因而这期断层活动对本区油气的运聚作用不明显;第2期断层活动时,只有沙三段烃源岩已进入排烃阶段,规模较小,断层活动对油气运移的作用较小;第3期的断层活动与排烃高峰期的烃源岩相匹配,所以该期是本区最有效的断层输导体发育期。CH35井、CH40井、ZH6井在沙二段,沙三段断层-岩性油藏的形成与断层的输导和封堵作用均有关(图 12)。
斜坡低部位位于凹陷内,表现为扇三角洲前缘、远岸水下扇等沉积相特征,发育大量滑塌浊积扇和水下扇前缘等孤立砂体,这些砂体自沉积以来就被泥岩在三维空间上分隔包围,形成透镜状砂体。在沉积砂体周围的烃源岩成熟后,油气可在毛细管力作用下由烃源岩直接运移至储层中,形成油气聚集。但由于砂体与烃源岩接触面积小,砂体体积有限、且孔渗性较差,不发生侧向运移和聚集,其油气富集的程度较差,常发育为透镜状岩性油藏[42]。虽然斜坡低部位勘探程度低,但也是今后岩性油气藏重点勘探区带。
4 结论(1)埕海斜坡临近歧口生烃凹陷,共发育4套泥质烃源岩,有机质类型以Ⅱ1型和Ⅱ2型为主,有机质丰度好,为油藏形成提供了物质基础;沙二段发育3个优质孔隙带,为油藏形成提供了良好的保存条件,源储压差为油气运移提供了动力条件。
(2)地层超覆油藏、古河道砂体岩性油藏主要存在于研究区斜坡高部位;断层-岩性油藏,主要存在于斜坡中部埕海断阶带,占油藏总数的90% 以上,是区内分布最广的油藏类型;透镜状岩性油气藏主要分布在斜坡低部位。通过斜坡区不同构造部位分异对比,建立了埕海斜坡斜坡不同部位的油气成藏模式。
(3)有利的油源条件为油藏的形成提供物质基础,控制油藏的平面分布格局;不整合面、连通砂体侧向输导体系是斜坡高部位成藏的主控因素;断层的封闭性和输导性,使斜坡中部断层同时具备油气运移通道和断层圈闭的双重作用,是斜坡中部位成藏的主控因素;源内储层是斜坡低部位成藏的关键因素。
[1] |
赵贤正, 金凤鸣, 李玉帮, 等. 断陷盆地斜坡带类型与油气运聚成藏机制. 石油勘探与开发, 2016, 43(6): 841-849. ZHAO Xianzheng, JIN Fengming, LI Yubang, et al. Hydrocarbon enrichment theory and exploration practice in the slope of fault lake basin: A case study of Paleogene in Huanghua depression. Petroleum Exploration and Development, 2016, 43(6): 841-849. |
[2] |
周立宏, 韩国猛, 董晓伟, 等. 歧口凹陷埕海高斜坡低饱和度油藏形成机制与开发实践: 以刘官庄油田馆陶组三段为例. 中国石油勘探, 2021, 26(1): 74-85. ZHOU Lihong, HAN Guomeng, DONG Xiaowei, et al. Formation mechanism and development practice of low saturation oil reservoir in Chenghai high slope in the Qikou Sag: A case study of Ng3 oil reservoir in Liuguanzhuang oilfield. China Petroleum Exploration, 2021, 26(1): 74-85. |
[3] |
赵贤正, 周立宏, 蒲秀刚, 等. 断陷湖盆斜坡区油气富集理论与勘探实践: 以黄骅坳陷古近系为例. 中国石油勘探, 2017, 22(2): 13-24. ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Theory and exploration practice of oil and gas enrichment in slope area of faulted lake basin: Taking Paleogene in Huanghua depression as an example. China Petroleum Exploration, 2017, 22(2): 13-24. DOI:10.3969/j.issn.1672-7703.2017.02.002 |
[4] |
于学敏, 何咏梅, 姜文亚, 等. 黄骅坳陷歧口凹陷古近系烃源岩主要生烃特点. 天然气地球科学, 2011, 22(6): 1001-1008. YU Xuemin, HE Yongmei, JIANG Wenya, et al. Hydrocarbon generation of Paleogene source rocks in Qikou Sag. Natural Gas Geoscience, 2011, 22(6): 1001-1008. |
[5] |
蒲秀刚, 周立宏, 王文革, 等. 黄骅坳陷歧口凹陷斜坡区中深层碎屑岩储集层特征. 石油勘探与开发, 2013, 40(1): 36-48. PU Xiugang, ZHOU Lihong, WANG Wenge, et al. Mediumdeep clastic reservoirs in the slope area of Qikou Sag, Huanghua Depression, Bohai Bay Basin. Petroleum Exploration and Development, 2013, 40(1): 36-48. |
[6] |
BLOCH S, LANDER R H, BONNELL L. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bulletin, 2002, 86(2): 301-328. |
[7] |
赵贤正, 蒲秀刚, 周立宏, 等. 渤海湾盆地歧口凹陷古近系沉积体系重建与储集层评价. 成都理工大学学报(自然科学版), 2017, 44(5): 565-578. ZHAO Xianzheng, PU Xiugang, ZHOU Lihong, et al. Reconstruction of Paleogene sedimentary system and reservoir evaluation in Qikou Sag, Bohai Bay Basin, China. Journal of Chengdu University of Technology(Natural Science Edition), 2017, 44(5): 565-578. DOI:10.3969/j.issn.1671-9727.2017.05.07 |
[8] |
高长海, 查明, 张新征. 埕北断坡区断层输导体系与油气成藏模式. 新疆石油地质, 2007, 28(6): 721-724. GAO Changhai, ZHA Ming, ZHANG Xinzheng. Fault transport system and hydrocarbon accumulation pattern in Chengbei faultramp area. Xinjiang Petroleum Geology, 2007, 28(6): 721-724. DOI:10.3969/j.issn.1001-3873.2007.06.017 |
[9] |
高长海, 查明. 大港油田埕北断阶带不整合与油气运聚. 岩性油气藏, 2010, 22(1): 37-42. GAO Changhai, ZHA Ming. Unconformity surface and hydrocarbon migration and accumulation in Chengbei fault step belt of Dagang Oilfield. Lithologic Reservoirs, 2010, 22(1): 37-42. DOI:10.3969/j.issn.1673-8926.2010.01.007 |
[10] |
高长海, 查明. 埕北断坡区断层对油气成藏的控制作用. 地质找矿论丛, 2011, 26(1): 74-78. GAO Changhai, ZHA Ming. Control of fault on hydrocarbon accumulation in Chengbei fault-ramp. Discussion on Geological Prospecting, 2011, 26(1): 74-78. |
[11] |
蒲秀刚, 柳飒, 周建生, 等. "三元耦合"控藏机制与勘探有利区分析: 以渤海湾盆地歧口凹陷古近系岩性地层油气藏为例. 石油实验地质, 2008, 30(6): 575-579. PU Xiugang, LIU Sa, ZHOU Jiansheng, et al. Mechanism of ternary factors coupling for controlling reservoir and analysis of beneficial exploration areas: An example of the Eogene stratigraphic reservoir of Qikou Sag in Huanghua Depression of the Bohai Bay Basin. Petroleum Geology & Experiment, 2008, 30(6): 575-579. DOI:10.3969/j.issn.1001-6112.2008.06.008 |
[12] |
蒲秀刚, 吴永平, 周建生, 等. 歧口凹陷油藏特征及勘探潜力. 石油学报, 2007, 28(2): 35-39. PU Xiugang, WU Yongping, ZHOU Jiansheng, et al. Characteristics and exploration potential of lithologic-stratigraphic hydrocarbon reservoirs in Qikou Sag of Dagang Oilfield. Acta Petrolei Sinica, 2007, 28(2): 35-39. DOI:10.3321/j.issn:0253-2697.2007.02.006 |
[13] |
袁淑琴, 董晓伟, 周凤春, 等. 源外地层-岩性油藏成藏与富集高产主控因素. 石油学报, 2016, 37(增刊2): 10-18. YUAN Shuqin, DONG Xiaowei, ZHOU Fengchun, et al. Main controlling factors of hydrocarbon accumulation and enrichment and high yield in stratigraphic-lithological reservoirs outside the source area. Acta Petrolei Sinica, 2016, 37(Suppl 2): 10-18. |
[14] |
王昊宸, 毛小平, 耿涛, 等. 陆相伦坡拉盆地牛堡组烃源岩特征分析与展布预测. 特种油气藏, 2019, 26(6): 35-40. WANG Haochen, MAO Xiaoping, GENG Tao, et al. Characterization and distribution prediction of sources-rocks in the Niubao Formation of continental Lunpola Basin. Special Oil and Gas Reservoirs, 2019, 26(6): 35-40. DOI:10.3969/j.issn.1006-6535.2019.06.006 |
[15] |
李建明, 史玲玲, 汪立群, 等. 柴西南地区昆北断阶带基岩油藏储层特征分析. 岩性油气藏, 2011, 23(2): 20-23. LI Jianming, SHI Lingling, WANG Liqun, et al. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin. Lithologic Reservoirs, 2011, 23(2): 20-23. DOI:10.3969/j.issn.1673-8926.2011.02.004 |
[16] |
付爽, 庞雷, 许学龙, 等. 准噶尔盆地玛湖凹陷下乌尔禾组储层特征及其控制因素. 天然气地球科学, 2019, 30(4): 468-477. FU Shuang, PANG Lei, XU Xuelong, et al. The characteristics and their controlling factors on reservoir in Permian Lower Urho Formation in Mahu Sag, Junggar Basin. Natural Gas Geoscience, 2019, 30(4): 468-477. |
[17] |
袁晓冬, 姜在兴, 张元福, 等. 滦平盆地白垩系陆相页岩油储层特征. 石油学报, 2020, 41(10): 1197-1208. YUAN Xiaodong, JIANG Zaixing, ZHANG Yuanfu, et al. Characteristics of the Cretaceous continental shale oil reservoirs in Luanping Basin. Acta Petrolei Sinica, 2020, 41(10): 1197-1208. DOI:10.7623/syxb202010004 |
[18] |
周凤娟, 王振奇, 支东明, 等. 准噶尔盆地红山嘴地区克拉玛依下亚组孔隙结构特征及影响因素. 岩性油气藏, 2008, 20(4): 65-70. ZHOU Fengjuan, WANG Zhenqi, ZHI Dongming, et al. Pore structure and influencing factors of lower Karamay Formation in Hongshanzui area of Junggar Basin. Lithologic Reservoirs, 2008, 20(4): 65-70. DOI:10.3969/j.issn.1673-8926.2008.04.012 |
[19] |
何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性. 石油与天然气地质, 2018, 39(3): 472-484. HE Chencheng, HE Sheng, GUO Xusheng, et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation's first member, Jiaoshiba block, Sichuan Basin. Oil & Gas Geology, 2018, 39(3): 472-484. |
[20] |
曹宝格, 李源流, 肖玲, 等. 低渗透油藏微观孔隙结构特征研究: 以白狼城油区长2储层为例. 新疆地质, 2019, 37(4): 536-540. CAO Baoge, LI Yuanliu, XIAO Ling, et al. Study on the micropore structure characteristics in low permeability reservoir: Take Chang 2 reservoir in Bailangcheng oil area as an example. Xinjiang Geology, 2019, 37(4): 536-540. DOI:10.3969/j.issn.1000-8845.2019.04.017 |
[21] |
XIAO Weiqi, XING Enhao. Black shale of Wufeng-Longmaxi Formation in southeast Chongqing pore type of reservoir. IOP Conference Series: Earth and Environmental Science, 2019, 267(2): 022017. DOI:10.1088/1755-1315/267/2/022017 |
[22] |
邬光辉, 成丽芳, 于红枫, 等. 塔中上奥陶统台缘带高频层序地层特征与储层纵向分布. 新疆地质, 2011, 29(2): 203-206. WU Guanghui, CHENG Lifang, YU Hongfeng, et al. The characteristics and its affects to reservoirs of high-frequency sequence of Upper Ordovician platform margin in Tazhong area. Xinjiang Geology, 2011, 29(2): 203-206. DOI:10.3969/j.issn.1000-8845.2011.02.017 |
[23] |
陶碧娥, 傅恒. 塔河地区志留系沉积体系及储层纵向分布特征. 岩性油气藏, 2009, 21(1): 40-45. TAO Bi'e, FU Heng. Vertical distribution characteristics of reservoir and sedimentary system of Silurian in Tahe area. Lithologic Reservoirs, 2009, 21(1): 40-45. DOI:10.3969/j.issn.1673-8926.2009.01.009 |
[24] |
马中良, 郑伦举, 秦建中, 等. 盆地沉降、抬升过程中源储压差的生排烃效应. 石油实验地质, 2011, 33(4): 402-407. MA Zhongliang, ZHENG Lunju, QIN Jianzhong, et al. Hydrocarbon generation and expulsion caused by pressure difference between source rock and reservoir during basin subsiding and uplifting. Petroleum Geology & Experiment, 2011, 33(4): 402-407. DOI:10.3969/j.issn.1001-6112.2011.04.014 |
[25] |
成瀚, 胡望水, 李涛, 等. 下刚果盆地A区块流体势特征及其对油气运聚的影响. 岩性油气藏, 2016, 28(2): 86-92. CHENG Han, HU Wangshui, LI Tao, et al. Characteristics of fluid potential and its implication to hydrocarbon migration and accumulation in block A, Lower Congo Basin. Lithologic Reservoirs, 2016, 28(2): 86-92. DOI:10.3969/j.issn.1673-8926.2016.02.012 |
[26] |
程洪, 汪彦, 鲁新便. 塔河地区深层碳酸盐岩断溶体圈闭类型及特征. 石油学报, 2020, 41(3): 301-309. CHENG Hong, WANG Yan, LU Xinbian. Classifications and characteristics of deep carbonate fault-karst trap in Tahe area. Acta Petrolei Sinica, 2020, 41(3): 301-309. |
[27] |
邵晓州, 王苗苗, 齐亚林, 等. 鄂尔多斯盆地平凉北地区长8油藏特征及成藏主控因素. 岩性油气藏, 2021, 33(6): 59-69. SHAO Xiaozhou, WANG Miaomiao, QI Yalin, et al. Characteristics and main controlling factors of Chang 8 reservoir in northern Pingliang area, Ordos Basin. Lithologic Reservoirs, 2021, 33(6): 59-69. |
[28] |
田光荣, 王建功, 孙秀建, 等. 柴达木盆地阿尔金山前带侏罗系含油气系统成藏差异性及其主控因素. 岩性油气藏, 2021, 33(1): 131-144. TIAN Guangrong, WANG Jiangong, SUN Xiujian, et al. Hydrocarbon accumulation differences and main controlling factors of Jurassic petroleum system in Altun piedmont of Qaidam Basin. Lithologic Reservoirs, 2021, 33(1): 131-144. |
[29] |
王德英, 于娅, 张藜, 等. 渤海海域石臼坨凸起大型岩性油气藏成藏关键要素. 岩性油气藏, 2020, 32(1): 1-10. WANG Deying, YU Ya, ZHANG Li, et al. Key factors for reservoir formation of large lithologic reservoirs in Shijiutuo uplift, Bohai Sea. Lithologic Reservoirs, 2020, 32(1): 1-10. |
[30] |
张峰, 李胜利, 黄杰, 等. 华北蠡县斜坡油气藏分布、成藏模式及主控因素探讨. 岩性油气藏, 2015, 27(5): 189-195. ZHANG Feng, LI Shengli, HUANG Jie, et al. Hydrocarbon reservoir distribution, accumulation models and main controlling factors in Lixian slope, North China. Lithologic Reservoirs, 2015, 27(5): 189-195. DOI:10.3969/j.issn.1673-8926.2015.05.032 |
[31] |
江涛, 苗洪波, 王芳, 等. 松辽盆地西部盆缘带地层超覆油藏形成条件. 大庆石油地质与开发, 2006, 25(4): 24-26. JIANG Tao, MIAO Hongbo, WANG Fang, et al. Generation condition for overlap reservoir in border belt of western Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(4): 24-26. DOI:10.3969/j.issn.1000-3754.2006.04.009 |
[32] |
段国豪, 周吉春, 潘静文. 塔河油田TK7226井区河道砂岩性油藏滚动开发实践及认识. 石油天然气学报, 2014, 36(4): 131-134. DUAN Guohao, ZHOU Jichun, PAN Jingwen. Rolling development practice and understanding of channel sandstone reservoirs in well block TK7226 of Tahe Oilfield. Journal of Petroleum and Gas Technology, 2014, 36(4): 131-134. DOI:10.3969/j.issn.1000-9752.2014.04.027 |
[33] |
董才源, 刘震, 刘启东, 等. 高邮凹陷戴南组断层—岩性油藏成藏体系及主控因素研究. 石油实验地质, 2013, 35(4): 395-400. DONG Caiyuan, LIU Zhen, LIU Qidong, et al. Accumulation system and controlling factors of fault-lithologic reservoirs of Dainan Formation in Gaoyou Sag, northern Jiangsu Basin. Petroleum Geology & Experiment, 2013, 35(4): 395-400. |
[34] |
杨智, 邹才能. "进源找油": 源岩油气内涵与前景. 石油勘探与开发, 2019, 46(1): 173-184. YANG Zhi, ZOU Caineng. "Exploring petroleum inside source kitchen": Connotation and prospects of source rock oil and gas. Petroleum Exploration and Development, 2019, 46(1): 173-184. |
[35] |
何碧竹, 许志琴, 焦存礼, 等. 塔里木盆地构造不整合成因及对油气成藏的影响. 岩石学报, 2011, 27(1): 253-265. HE Bizhu, XU Zhiqin, JIAO Cunli, et al. Tectonic unconformities and their forming: Implication for hydrocarbon accumulations in Tarim basin. Acta Petrologica Sinica, 2011, 27(1): 253-265. |
[36] |
韩宝, 王昌伟, 盛世锋, 等. 准噶尔盆地中拐—五区二叠系不整合面对油气成藏控制作用. 天然气地球科学, 2017, 28(12): 1821-1828. HAN Bao, WANG Changwei, SHENG Shifeng, et al. Control of Permian unconformity on reservoir formation in Zhongguaidistrict 5 area of Junggar Basin. Natural Gas Geoscience, 2017, 28(12): 1821-1828. |
[37] |
郭丽丽, 张卫海, 吴刚. 陆相成熟烃源岩区连通砂体对油气运移的控制作用. 地球科学与环境学报, 2011, 33(2): 159-162. GUO Lili, ZHANG Weihai, WU Gang. Control of connected sandbody on oil gas migration in terrestrial facies mature hydrocarbon source rock. Journal of Earth Science and Environment, 2011, 33(2): 159-162. DOI:10.3969/j.issn.1672-6561.2011.02.009 |
[38] |
胡贺伟, 李慧勇, 许鹏, 等. 断裂密集带油气差异富集主控因素探讨: 以歧口凹陷歧南断阶带为例. 岩性油气藏, 2020, 32(5): 34-45. HU Hewei, LI Huiyong, XU Peng, et al. Main controlling factors of differential enrichment of oil and gas in fault concentrated zones: A case study from Qinan step-fault zone in Qikou Sag. Lithologic Reservoirs, 2020, 32(5): 34-45. |
[39] |
关德范, 徐旭辉, 李志明, 等. 烃源岩有限空间生排烃基础研究新进展. 石油实验地质, 2011, 33(5): 441-446. GUAN Defan, XU Xuhui, LI Zhiming, et al. New progress in basic studies of hydrocarbon generation and expulsion of source rocks in finite space. Petroleum Geology & Experiment, 2011, 33(5): 441-446. DOI:10.3969/j.issn.1001-6112.2011.05.001 |
[40] |
卢恩俊, 柳少波, 于志超, 等. 柴达木盆地英雄岭南带断裂活动特征及其控藏作用. 岩性油气藏, 2021, 33(1): 161-174. LU Enjun, LIU Shaobo, YU Zhichao, et al. Characteristics of fault activity and its control on hydrocarbon accumulation in southern Yingxiongling area, Qaidam Basin. Lithologic Reservoirs, 2021, 33(1): 161-174. |
[41] |
田立新, 王冰洁. 渤海海域辽中凹陷LD油田油源断层运移能力定量评价及运移模式. 石油与天然气地质, 2018, 39(3): 567-577. TIAN Lixin, WANG Bingjie. Quantitative evaluation of source tapping fault for oil migration and establishment of its migration model in LD oilfield in the Liaozhong Sag, Bohai Sea. Oil & Gas Geology, 2018, 39(3): 567-577. |
[42] |
马中良, 曾溅辉, 张善文, 等. 砂岩透镜体油运移过程模拟及成藏主控因素分析. 岩性油气藏, 2008, 20(1): 69-74. MA Zhongliang, ZENG Jianhui, ZHANG Shanwen, et al. Migration and accumulation mechanism of sand lens reservoirs and its main controlling factors. Lithologic Reservoirs, 2008, 20(1): 69-74. DOI:10.3969/j.issn.1673-8926.2008.01.012 |