岩性油气藏  2022, Vol. 34 Issue (6): 126-140       PDF    
×
四川盆地磨溪地区震旦系灯影组四段储层特征及勘探启示
耿夏童1,2, 邢凤存1,2, 闫海军3, 付辉4, 柴寒冰2, 刘志波2, 陈孝全2, 古强2    
1. 成都理工大学 油气藏地质及开发工程国家重点实验室, 成都 610059;
2. 成都理工大学沉积地质研究院, 成都 610059;
3. 中国石油勘探开发研究院, 北京 100083;
4. 成都北方石油勘探开发技术有限公司, 成都 610051
摘要: 综合岩心、薄片、成像测井等资料,在高精度层序地层划分及沉积相研究的基础上,对四川盆地磨溪地区震旦系灯影组四段的台缘丘、台缘丘后滩及局限台地等相带储层特征进行了描述和对比。研究结果表明:①磨溪地区灯影组四段可划分出2个三级层序、7个准层序组和13个准层序。②研究区台地边缘带可划分出台缘丘、台缘滩、丘(滩)间等亚相,在局限台地内部识别出了台内丘、台内滩、丘(滩)间、潟湖和局限潮下等亚相,并细分了微相类型。③台缘区与台内区的储集岩石类型、储集空间及储集类型等基本一致,受三级层序高位体系域控制,垂向上发育2套储层,低角度和高角度微裂缝密度垂向上差异较大,物性具有向上变好的趋势。④不同相带储层孔隙空间类型及储层物性存在差异,台缘微生物丘发育区储层物性好,微裂缝和孔洞发育好,台缘丘后滩发育区微裂缝和孔隙发育程度及储层物性均变差,台内区进一步变差,但远离台缘区的局限台地区仍发育良好储层。
关键词: 微生物丘    台缘丘    局限台地    表生岩溶    灯影组四段    震旦系    磨溪地区    四川盆地    
Reservoir characteristics of the fourth member of Sinian Dengying Formation and its implications for oil and gas exploration in Moxi area, Sichuan Basin
GENG Xiatong1,2, XING Fengcun1,2, YAN Haijun3, FU Hui4, CHAI Hanbing2, LIU Zhibo2, CHEN Xiaoquan2, GU Qiang2    
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China;
2. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China;
3. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
4. Chengdu North Petroleum Exploration and Development Technology Co., Ltd., Chengdu 610051, China
Abstract: Based on the high-precision sequence stratigraphic division and sedimentary facies research, the reservoir characteristics of the platform-margin mound, the back shoal of platform-margin mound and the restricted platform of the fourth member of Sinian Dengying Formation in Moxi area, Sichuan Basin were characterized and compared by using the data of cores, thin sections and imaging logging. The results show that: (1)The fourth member of Dengying Formation in Moxi area can be divided into two third-order sequences, seven parasequence sets and 13 parasequence.(2)Platform-margin mound, platform-margin shoal, inter-mound and shoal were recognized in platform-margin, and restricted platform were divided into inner mound, inner shoal, inter mound, lagoons and restricted subtidal subfacies, then the microfacies were divided further.(3)The reservoir rock type, reservoir space and reservoir type of platform-margin zone and intra-platform area are basically the same and controlled by the highstand systems tract. Two sets of reservoirs are developed vertically, low angle and high angle microfractures are differently developed vertically, and physical properties tend to improve upward.(4)The reservoir space types and physical properties in different facies zones are different. The platform-margin microbial mound has the characteristics of good reservoir physical properties, with microfractures and pores well developed. The development degree of microfractures and pores and physical properties in the development area of back shoal of platform-margin mound is weakened, and it is further weakened in the intra-platform zones. However, there are good reservoirs developed in the restricted platform far from the platform-margin zones.
Key words: microbial mound    platform-margin mound    restricted platform    supergene karst    the fourth member of Dengying Formation    Sinian    Moxi area    Sichuan Basin    
0 引言

近年来,四川盆地磨溪—高石梯地区(磨高地区)震旦系灯影组四段(灯四段)微生物丘相与表生岩溶复合型储层取得了7 500 km2的重大天然气勘探突破[1-2],展现出良好的天然气勘探开发前景。学者们对该地区在油气藏领域做了大量研究工作,取得了丰硕的科研成果。邢凤存等[3]、汪泽成等[4]、李晓清等[5]认为灯影组沉积时期磨高地区发育绵阳—长宁大型克拉通内裂陷,裂陷槽两侧发育高能台缘生物丘滩高能带,磨高地区储层发育程度和储层物性均较好。徐会林等[6]在磨溪地区灯四段也划分出了台地边缘带、台地内部等不同储层类型,灯四段台地边缘带储层明显优于台内区,向台内发育程度逐渐降低。张明等[7]、肖富森等[8]、朱迅等[9]综合正演模拟结果与实际地震资料分析发现,台内区也具有优质储层,从而近期油气勘探也逐渐从台缘区向台内区拓展。针对台缘丘滩体中岩石类型和微相的划分也已经有了较系统的研究,兰才俊等[10]、谢武仁等[11]、张玺华等[12]、邓韦克等[13]认为丘滩复合体亚相的发育程度是影响储层发育差异性的主要控制因素之一,丘滩体中的丘核微相因海水胶结作用弱,准同生大气淡水溶蚀作用强,储层最好,故为优势相带;除此之外,李博媛等[14]、李启桂等[15]、张林等[16]认为桐湾运动、古地貌环境、水动力条件以及表生岩溶作用等对储层影响明显,也导致了储层较强的非均质性。

目前针对磨溪地区灯影组储层的研究更多关注台地边缘带和丘滩体,针对台地内部的油气勘探尚待深入,对台缘—台内区储层的发育规律及差异性有待探讨,这也将影响到台内区油气勘探部署。为此,在已有研究的基础上,精选川中磨溪地区灯四段台缘丘主体区、台缘丘后滩主体区及局限台地主体区典型钻井,综合岩心、岩石薄片、物性测试及成像测井等资料,在高精度层序地层及沉积相研究的基础上,对3个区带主要亚相的储层发育特征及垂向发育规律进行精细解析及对比,总结不同相带储层时空分布的规律与差异,以期为灯四段进一步油气勘探提供一定参考。

1 地质概况

四川盆地磨溪地区位于遂宁市安居区玉丰镇,地处四川盆地磨高区块。构造上该区块属川中磨溪—龙女寺北斜坡[17-19],位于川中古隆起平缓褶皱带构造中部、乐山—龙女寺古隆起东段。四川盆地震旦系灯影组自下而上划分为灯一段、灯二段、灯三段、灯四段。研究区曾经历多期次构造运动,其中震旦纪晚期桐湾运动对灯影组储层发育起重要作用。桐湾运动可划分为Ⅰ,Ⅱ,Ⅲ幕[20],分别对应上震旦统灯影组三段-二段、上震旦统灯四段-下寒武统麦地坪组,以及下寒武统筇竹寺组-麦地坪组等界面(图 1)。灯影组二段沉积末期发生桐湾Ⅰ幕运动,灯二段地层遭受抬升剥蚀,形成灯二段与灯三段之间的不整合接触面[21];寒武纪沉积前发生桐湾Ⅱ,Ⅲ幕运动,灯四段地层遭受大气淡水溶蚀作用,导致部分地区完全剥蚀,叠合后期构造运动引起的进一步剥蚀,使得区域地层厚度产生较大差异[22-23],形成缝洞型储层[24]

下载原图 图 1 四川盆地磨溪地区构造位置(a)、震旦系灯四段沉积相平面展布(b)及岩性地层综合柱状图(c)(据文献[26, 30]修改) Fig. 1 Structural location(a), sedimentary facies of the fourth member of Sinian Dengying Formation(b) and stratigraphic column(c)of Moxi area, Sichuan Basin

刘树根等[25]以兴凯地裂运动观点为依据,提出早寒武世在四川盆地西部的绵阳—乐至—隆昌—长宁一带存在一个拉张槽,在拉张槽的东侧灯四段沉积期发育了近南北向的台缘生物丘滩高能带,远离海槽区东侧为一套局限台地沉积[26];在槽内发育了下寒武统筇竹寺组主力烃源岩,该套烃源岩与受表生岩溶改造的灯影组台缘生物丘滩带侧向对接,形成了有利的生储盖组合[27-29]

2 高精度层序地层划分

在现有层序地层研究的基础上[31-33],根据岩心、薄片、测井响应等资料,结合小波变换结果,采用级别由大到小的层序划分方式对四川盆地磨溪地区震旦系灯四段进行了高精度层序地层划分。在灯四段共识别出2个三级层序,分别为SQ1和SQ2,每个三级层序均由水进体系域(TST)和高位体系域(HST)构成,7个准层序组(自下而上命名为Pss1— Pss7)及13个准层序(自下而上命名为Ps1—Ps13),其中SQ1包含Pss1—Pss3,SQ2包含Pss4—Pss7(图 2)。在不同级别层序界面上,岩性总体表现为白云岩与高硅质或高泥质含量的白云岩突变接触,在自然伽马(GR)曲线上表现为不同级别层序界面上高GR与界面下低GR的突变接触特征;在成像测井上多表现为突变接触特征,即不同级别层序界面上的暗色高电阻、水平层理发育、层薄,与不同级别层序界面下的浅色低电阻率、水平层理不发育、地层厚度大的突变接触;在小波变换图像上具有明显的能量团突变特征。

下载原图 图 2 四川盆地磨溪地区M9井震旦系灯四段沉积相、层序地层及储层综合柱状图 Fig. 2 Comprehensive column of sedimentary facies, sequence stratigraphy and reservoir of the fourth member of Sinian Dengying Formation of well M9 in Moxi area, Sichuan Basin
3 沉积相类型及特征

四川盆地磨溪地区震旦系灯四段主要发育台缘丘滩和局限台地沉积[26, 34-35]。考虑到从地层微电阻率扫描图像(FMI)上可直观识别出岩石颗粒大小、结构、粒序特征和层理类型,根据此类沉积特征,可进行沉积相类型划分和沉积环境分析。在已有研究的基础上,根据岩心观察、薄片分析与成像测井,对研究区灯影组四段沉积相进行了划分(表 1),识别出台地边缘和局限台地相沉积。台地边缘相主要发育台缘丘、台缘滩及丘(滩)间等亚相;局限台地相发育台内丘、台内滩、潟湖、局限潮下及丘(滩)间等亚相类型(图 3)。

下载CSV 表 1 四川盆地磨溪区块震旦系灯四段沉积相划分 Table 1 Sedimentary facies division of the fourth member of Sinian Dengying Formation in Moxi area, Sichuan Basin
下载原图 图 3 四川盆地磨溪地区震旦系灯四段沉积亚相镜下特征 (a)台缘丘,白云岩溶蚀孔隙内铁白云石半充填,可见残余溶孔内沥青充填,M8井,5 113.32~5 113.41 m;(b)局限潮下,细—中晶白云岩,溶孔内沥青充填,M39井,5 275.86~5 275.91 m;(c)台内丘,孤立溶蚀孔隙和裂缝,凝块石,M39井,5 304.41~5 302.60 m;(d)台内丘,粒间溶孔,藻砂屑和凝块石,M39井,5 301.70~5 302.03 m;(e)台缘丘丘间,泥—粉晶白云岩,溶孔和溶蚀缝发育,M8井,5 112.91~ 5 113.01 m;(f)台内滩,滩粒溶孔,残余藻砂屑结构,M39井,5 302.13~5 302.41 m。 Fig. 3 Microscopic photographs of typical sedimentary subfacies of the fourth member of Sinian Dengying Formation in Moxi area, Sichuan Basin
3.1 台地边缘

该相带形成于台地与斜坡间地貌相对较高的部位,水体较浅,水动力较强,海水带来大量营养物质,微生物丘生长较快,沉积厚度大。台地边缘相由台缘丘、台缘滩和台缘丘(滩)间等亚相组成(图 3)。台缘丘多与台缘滩叠置发育,岩石类型多样,藻黏结结构明显,可进一步划分为丘基、丘核等微相。台缘丘在成像测井上往往表现为块状结构,内部可见大量高电阻率暗色斑点,内部纹层具有起伏性,溶蚀孔洞发育,岩心观察可见溶蚀孔洞的发育情况;台缘滩相主要由各种颗粒组成[33-35],可见残余藻屑结构,在成像测井图像上呈颜色较浅的块状显示,但溶孔孔洞发育程度及纹层的起伏明显弱于台缘丘;丘(滩)间位于台缘滩之间相对低洼的部位,主要以深灰色泥晶云岩为主,发育水平纹层,可见鸟眼构造,成像测井图像上表现为暗色高电阻率的层状体(图 4)。

下载原图 图 4 四川盆地磨溪地区震旦系灯四段不同沉积亚相典型全直径岩心及成像测井响应图像 (a)台缘生物丘,溶蚀孔洞发育,M9井,5 033.81~5 033.91 m,5 034.36~5 034.46 m;(b)台缘生屑滩,可见高角度微裂缝,M8井,2 114.90~ 2 115.00 m;(c)滩间,发育鸟眼构造,M8井,5 105.86~5 106.04 m;(d)台缘丘基的藻屑滩,可见直立缝和顺层溶蚀孔隙,M9井,5 046.98~ 5 047.09 m;(e)台内滩,顺层缝合线,发育直立缝,M39井,5 287.30~5 287.48 m;(f)台内丘,发育顺层溶蚀孔隙及直立缝,M39井,5 305.12~ 5 305.34 m;(g)局限潮下云坪,可见高角缝,M39井,5 254.38~5 254.61 m;(h)硅质潟湖,直立缝发育,M39井,5 256.96~5 257.07 m。 Fig. 4 Typical full-diameter cores and imaging logging responses of different sedimentary subfacies of the fourth member of Sinian Dengying Formation in Moxi area, Sichuan Basin
3.2 局限台地

局限台地相可进一步划分为台内丘、台内滩、潟湖、局限潮下和丘(滩)间沉积等亚相类型。台内丘滩体的沉积主要由古隆起和海平面变化共同控制[36],台内丘发育藻黏结结构,与台缘丘具有类似的成像测井响应特征。台内滩多发育浅灰色藻砂屑云岩,岩石类型以颗粒云岩为主,在成像测井上主要表现为块状均匀的电阻率特征,内部往往可见高电阻率的斑状溶蚀孔洞发育,其与潮坪和潟湖高电阻率特征构成明暗间互结构。潮下带较低能沉积区域被称为局限潮下沉积,主要发育泥云坪微相沉积,其次为云坪沉积。潟湖是局限台地内部相对平静水域和深水区域,水平层理发育,且成层状硅质岩发育,可划分为泥云岩潟湖及云硅质潟湖微相,在成像测井上表现为水平层理发育与高电阻率的明暗间互特征。

3.3 沉积相垂向演化

研究区内不同优势相带区沉积相垂向演化序列具有波动性和差异性,总体上,靠近海槽东侧边缘区可见台地边缘—局限台地—台地边缘的波动性变化;丘后滩区域下部以局限台地为主,上部台缘滩夹台缘丘,主要以台地边缘沉积为主(图 5);远离台缘带的局限台地区则表现为局限潮下—潟湖与台内丘滩的垂向组合(图 6)。

下载原图 图 5 四川盆地磨溪地区M8井震旦系灯四段沉积相、层序地层及储层综合柱状图 Fig. 5 Comprehensive column of sedimentary facies, sequence stratigraphy and reservoir of the fourth member of Sinian Dengying Formation of well M8 in Moxi area, Sichuan Basin
下载原图 图 6 四川盆地磨溪地区M39井震旦系灯四段沉积相、层序地层及储层综合柱状图 Fig. 6 Comprehensive column of sedimentary facies, sequence stratigraphy and reservoir of the fourth member of Sinian Dengying Formation of well M39 in Moxi area, Sichuan Basin
4 储层发育特征

在层序地层及沉积相研究的基础上,充分考虑岩心和成像测井对储层空间类型响应明显的特征,根据岩心、普通和铸体薄片、成像测井及实测物性和测井解释物性等资料,针对台缘丘主体区、台缘丘后滩主体区、远离台缘带的局限台地区,分别精选M9井、M8井和M39井等3口资料相对齐全的钻井,分别对3个区域进行精细地储层特征解析与对比。考虑到该地区表生岩溶改造影响明显,孔隙和裂缝对灯影组的储层物性影响较大[37-38],因此,重点分析孔隙和裂缝的发育特征,进行裂缝分析时,垂向上按照50 cm为单元进行了系统统计。

4.1 台缘丘发育区储层特征

台缘丘滩体发育区以M9井为例,不同沉积相带储层发育程度差异明显,与三级层序相对应,具有波动性储层向上变好的趋势,台缘—台内地区储层裂缝发育程度、储集性能均呈变差趋势。台地边缘相的裂缝密度大于局限台地相,台缘丘和台缘滩高角缝及溶蚀孔洞更为发育,局限台地相与台地边缘相相比,高角度缝发育程度略弱,低角度缝更为发育。不同准层序组内,储层发育特征存在差异,Pss7准层序组中,微裂缝和溶蚀孔洞发育,不同沉积亚相间具有一定差异,台缘丘亚相和丘间亚相横向和纵向微裂缝密度均较大,台缘滩亚相次之,台缘丘亚相和台缘滩亚相测井解释孔隙度均较高,溶蚀孔洞发育。Pss6准层序组微裂缝和溶蚀孔洞发育程度(尤其是溶蚀孔洞)较Pss7准层序组明显低,台缘滩和台缘丘的横向和纵向微裂缝密度均较大,测井解释孔隙度较高,局限潮下亚相中云坪微相的测井解释孔隙度较高,台缘丘亚相和台缘滩亚相次之。Pss5准层序组溶蚀孔洞发育程度进一步降低,局限潮下亚相中云坪微相较台内滩亚相横向和纵向微裂缝密度均大、测井解释孔隙度高。Pss4— Pss2准层序组中,微裂缝和溶蚀孔洞发育程度不均,但总体较Pss6和Pss7储层发育程度低,而其内部总体上Pss3和Pss2储层相对Pss4更发育,Pss1准层序组中,台缘滩亚相亚相的横向和纵向微裂缝密度均较大,台缘滩亚相和台缘丘亚相测井解释孔隙度均较高。

综合以上分析,认为M9井台缘丘亚相、台缘滩亚相和局限潮下亚相中云坪微相的横向和纵向微裂缝密度均大,测井解释孔隙度较高,每个准层序组内部均发育低角度和高角度微裂缝且具呈波动性向上发育程度升高的趋势,各个准层序组内部测井解释孔隙度均逐渐升高,储层物性具有向上波动性变好的趋势,测井解释储层主要分布在Pss1,Pss2和Pss5—Pss7准层序组内(表 2)。

下载CSV 表 2 四川盆地磨溪地区M9井震旦系灯四段不同沉积相储层信息统计 Table 2 Reservoir information of different sedimentary facies of the fourth member of Sinian Dengying Formation of well M9 in Moxi area, Sichuan Basin
4.2 台缘丘后滩发育区储层特征

台缘丘后滩发育区以M8井为例,储层发育较以台缘丘为主体的M9井差。总体上,高角度缝、低角度缝和顺层缝在整个灯四段比较发育,直立缝在灯四段顶部少量发育。垂向上,储层发育程度具有波动性特征,Pss7准层序组中,台缘丘亚相较丘间亚相横、纵向微裂缝密度均大、测井解释孔隙度高,也是该井灯四段主要溶洞发育层段;Pss6—Pss4准层序组中,台缘滩亚相和局限潮下亚相中云坪微相的横、纵向微裂缝密度均大,滩间海亚相云坪微相和台缘滩亚相测井解释孔隙度均较高,其中仅Pss6溶洞发育;Pss3准层序中,台内滩亚相横、纵向的微裂缝密度均较大,测井解释孔隙度较高;Pss2—Pss1准层序组中,台内丘横向和纵向的微裂缝密度均较大,测井解释孔隙度较高。

综合以上分析,认为M8井台缘(内)丘和台缘(内)滩横向和纵向的微裂缝密度均较大、测井解释孔隙度较高,各个准层序组内部均发育低角度和高角度微裂缝且呈波动性向上更加发育的特征,测井解释孔隙度逐渐升高,具有储层物性向上变好的趋势。整体上Pss1—Pss7微裂缝密度波动性向上变大、测井解释孔隙度逐渐向上升高,测井解释储层主要在Pss7,Pss6和Pss2准层序组内(表 3)。

下载CSV 表 3 四川盆地磨溪地区M8井震旦系灯四段不同沉积相储层信息统计 Table 3 Reservoir information of different sedimentary facies of the fourth member of Sinian Dengying Formation of well M8 in Moxi area, Sichuan Basin
4.3 局限台地丘滩区储层特征

局限台地相以M39井为例,低角度缝和顺层缝比较发育,并发育溶蚀孔洞(隙),直立缝在整个灯四段中上部和下部均比较发育,高角度缝在整个灯四段少量发育(表 4)。不同准层序组内储层发育特征存在差异,Pss7准层序组中,台内丘亚相和台内滩亚相较局限潮下亚相横向和纵向的微裂缝密度均大、溶蚀孔洞发育(图 6)、测井解释孔隙度高;Pss6—Pss4准层序组中,台内丘亚相和局限潮下亚相中云坪微相横向和纵向的微裂缝密度均较大、溶蚀孔洞的发育情况波动性变化,台内丘亚相测井解释孔隙度较高;Pss3准层序组中,台内滩亚相较局限潮下亚相横向和纵向的微裂缝密度均大、测井解释孔隙度高;Pss2—Pss1准层序中,台内滩亚相较滩间海亚相和局限潮下亚相横向和纵向的微裂缝密度均极大、测井解释孔隙度高。

下载CSV 表 4 四川盆地磨溪地区M39井震旦系灯四段不同沉积相储层信息统计 Table 4 Reservoir information of different sedimentary facies of the fourth member of Sinian Dengying Formation of well M39 in Moxi area, Sichuan Basin

综合以上分析,认为M39井台内丘亚相和台内滩亚相横向和纵向的微裂缝密度均较大、测井解释孔隙度较高,各个准层序组内部测井解释孔隙度均呈波动性向上升高,具有储层物性向上变好的趋势,整体上Pss1—Pss7准层序组的测井解释孔隙度波动性向上升高,测井解释储层主要发育在Pss6准层序组中。

4.4 不同相带储层特征对比

台缘丘、台缘滩和局限台地等相带储层垂向发育规律具有一定的相似性,受沉积相、层序地层和表生岩溶联合控制。沉积相控制了碳酸盐岩储层早期储集空间的发育,也决定着沉积早期的成岩环境,对成岩作用有一定影响。优势沉积相的沉积产物具有较高的原生孔隙度,是优质储层发育的基础。台地边缘丘滩体是储层发育的有利沉积相,拉张槽边缘水动力较强,由外海带来大量营养物质形成较大规模丘滩体,大量生物附着形成丰富的格架孔。此外在海平面频繁升降过程中,古地形较高的台缘带丘滩体易暴露出水面,受大气淡水淋滤后溶蚀,形成早期溶蚀孔隙,为形成丘滩体储集层奠定良好的基础。同时桐湾运动Ⅱ幕使海平面下降,将台缘丘滩体暴露发生风化壳溶蚀作用,形成大量的溶蚀孔洞[39]。潟湖和局限潮下亚相均不利于储层的发育。表生岩溶改造对储层影响明显,桐湾Ⅱ幕运动及其构造抬升剥蚀有利于对研究区储层进行表生岩溶改造[40-43]。台缘区与台内区储集岩石类型、储集空间及储集类型基本一致,主要以微裂缝和溶蚀孔洞为主,受2个三级层序高位体系域控制,垂向发育2套储层,各个高位体系域内部储层均具向上变好的趋势,在三级层序高位体系域内部,准层序组明显控制了储层的垂向发育,准层序内部具有储层向上变好的趋势,且低角度和高角度微裂缝密度波动性向上变大,储层物性向上变好。M8井、M9井和M39井的台缘(内)丘、台缘(内)滩、局限潮下亚相中云坪微相在横、纵向的微裂缝密度均较大、测井解释孔隙度较高。

不同相带储层孔隙空间类型及储集性能存在差异,台缘微生物丘发育主体区储集性能较好,微裂缝和孔洞发育;台缘丘后滩发育区微裂缝和孔隙及物性发育程度有所降低,台内区进一步降低。在Pss3和Pss2准层序组中,局限台地内部M39井储集性能较台缘丘后滩主体区M8井的好,表明远离台缘带的局限台地区仍然存在良好储层,可能与台内丘滩及表生岩溶叠合存在一定相关性(图 7)。

下载原图 图 7 四川盆地磨溪地区震旦系灯四段台缘—局限台地储层连井对比(位置参见图 1b Fig. 7 Well-tie reservoir correlation of platform margin and restricted platform of the fourth member of Sinian Dengying Formation in Moxi area, Sichuan Basin
5 勘探启示

四川盆地磨溪地区震旦系灯影组台缘带是未来10年油气勘探的重点区带[44],安岳气田是天然气增储上产的主力,有利储层发育区预测及优质成藏条件是其核心支撑。前期磨溪地区油气勘探重点集中在台缘丘滩带,具有储层发育和侧向近源特征,而台地内部存在储层是否发育以及油气供源是否能到达等诸多问题尚待明确。本次研究揭示台地内部仍然可以形成良好储层,回答了台地内部是否存在储层的问题。同时,近期研究逐渐认识到磨溪地区存在东西向走滑断裂[45],该走滑断裂的存在为西侧拉张区油气源可向台地内部疏导,并有望降低台缘带台地区地势的限制的认识提供了依据。存在良好储层及走滑断裂油气疏导,为远离台缘带台地区的灯影组四段油气成藏提供了良好条件。

研究中揭示了三级层序体系域和准层序组对台缘带和台地内部储层的明显控制作用,并且受到岩溶作用和构造运动的明显控制,从整体—局部把握了储层发育的纵横向展布规律,这一结论将为台缘和台地区储层的垂向分布及有利区预测提供良好的参考。研究取得的成果认识也对川中—川北灯影组四段台缘带乃至类似地区的油气储层研究及油气勘探提供可借鉴的思路与参考,有望获得重大勘探突破。

6 结论

(1)四川盆地磨溪地区震旦系灯四段共识别出2个三级层序,分别为SQ1和SQ2,每个三级层序均由TST和HST构成,7个准层序组(自下而上命名为Pss1—Pss7)及13个准层序(自下而上命名为Ps1—Ps13),其中SQ1包含Pss1—Pss3,SQ2包含Pss4—Pss7。

(2)研究区灯影组四段识别出台地边缘和局限台地相,其中台地边缘相主要发育台缘丘、台缘滩及丘(滩)间等亚相,局限台地相发育台内丘、台内滩、潟湖、局限潮下及丘(滩)间等亚相。

(3)研究区震旦系灯四段台缘区与台内区储层储集空间类型相似,主要为微裂缝和溶蚀孔洞,储层明显受三级层序高位体系域及准层序组控制,具有高位体系域内准层序组控制下的储层向上逐渐变好的趋势,准层序组可作为核心储层分析单元。

(4)研究区震旦系灯四段不同相带区储层存在一定差异,台缘微生物丘发育主体区储层物性好,微裂缝和孔洞发育,储层厚度大,并具有向局限台地区储层物性变差的趋势,但局限台地内部仍然发育良好储层,具有良好的天然气勘探前景。

参考文献
[1]
杨雨, 文龙, 谢继容, 等. 四川盆地海相碳酸盐岩天然气勘探进展与方向. 中国石油勘探, 2020, 25(3): 44-55.
YANG Yu, WEN Long, XIE Jirong, et al. Progress and direction of marine carbonate gas exploration in Sichuan Basin. China Petroleum Exploration, 2020, 25(3): 44-55.
[2]
LUO Bin, YANG Yaoming, LUO Wenjun, et al. Controlling factors of Dengying Formation reservoirs in the central Sichuan paleo-uplift. Petroleum Research, 2017, 2(1): 54-63. DOI:10.1016/j.ptlrs.2017.06.001
[3]
邢凤存, 陆永潮, 郭彤楼, 等. 碳酸盐岩台地边缘沉积结构差异及其油气勘探意义: 以川东北早三叠世飞仙关期台地边缘带为例. 岩石学报, 2017, 33(4): 1305-1316.
XING Fengcun, LU Yongchao, GUO Tonglou, et al. Sedimentary texture diversity of different carbonate platform marlins and its significance for petroleum exploration: A case study of carbonate platform marlins in Feixianguan period of the early Triassic, NE Sichuan Basin, China. Acta Petrologica Sinica, 2017, 33(4): 1305-1316.
[4]
汪泽成, 王铜山, 文龙, 等. 四川盆地安岳特大型气田基本地质特征与形成条件. 中国海上油气, 2016, 28(2): 45-52.
WANG Zecheng, WANG Tongshan, WEN Long, et al. Basic geological characteristics and accumulation conditions of Anyue giant gas field, Sichuan Basin. China Offshore Oil and Gas, 2016, 28(2): 45-52.
[5]
李晓清, 汪泽成, 张兴为, 等. 四川盆地古隆起特征及对天然气的控制作用. 石油与天然气地质, 2016, 22(4): 347-351.
LI Xiaoqing, WANG Zecheng, ZHANG Xingwei, et al. Characteristics of Paleo-uplifts in Sichuan Basin and their control action on natural gases. Oil & Gas Geology, 2016, 22(4): 347-351.
[6]
徐会林, 罗文军, 徐伟, 等. 磨溪震旦系灯影组台内优质储层主控因素. 天然气勘探与开发, 2021, 44(3): 11-18.
XU Huilin, LUO Wenjun, XU Wei, et al. Main factors controlling intraplatform quality reservoirs of Sinian Dengying Formation, Moxi block, Sichuan Basin. Natural Gas Exploration and Development, 2021, 44(3): 11-18.
[7]
张明, 戴晓峰, 庞春晓, 等. 川中地区震旦系灯影组台内带优质储层识别及应用. 天然气地球科学, 2021, 32(5): 764-771.
ZHANG Ming, DAI Xiaofeng, PANG Chunxiao, et al. Identification and application of the gas reservoirs in the intra-platform of the Sinian Dengying Formation in central Sichuan Basin. Natural Gas Geoscience, 2021, 32(5): 764-771.
[8]
肖富森, 陈康, 冉崎, 等. 四川盆地高石梯地区震旦系灯影组气藏高产井地震模式新认识. 天然气工业, 2018, 38(2): 8-15.
XIAO Fusen, CHEN Kang, RAN Qi, et al. New understandings of the seismic modes of high productivity wells in the Sinian Dengying Formation gas reservoirs in the Gaoshiti area, Sichuan Basin. Natural Gas Industry, 2018, 38(2): 8-15.
[9]
朱讯, 徐伟, 李菡韵, 等. 四川盆地高石梯-磨溪区块灯四段沉积相变对岩溶储层发育影响. 天然气勘探与开发, 2018, 41(3): 51-57.
ZHU Xun, XU Wei, LI Hanyun, et al. Effects of sedimentary facies change on development of karst reservoirs in Dengying 4 member, Gaoshiti-Moxi block, Sichuan Basin. Natural Gas Exploration and Development, 2018, 41(3): 51-57.
[10]
兰才俊, 徐哲航, 马肖琳, 等. 四川盆地震旦系灯影组丘滩体发育分布及对储层的控制. 石油学报, 2019, 40(9): 1069-1084.
LAN Caijun, XU Zhehang, MA Xiaolin, et al. Development and distribution of mound-shoal complex in the Sinian Dengying Formation, Sichuan Basin and its control on reservoirs Formation. Sichuan Basin and its control on reservoirs. Acta Petrolei Sinica, 2019, 40(9): 1069-1084.
[11]
谢武仁, 杨威, 汪泽成, 等. 台缘带特征、形成主控因素及其对油气成藏的控制: 以四川盆地灯影组为例. 地质科学, 2021, 56(3): 867-883.
XIE Wuren, YANG Wei, WANG Zecheng, et al. Characteristics and main controlling factors on the development of a platform margin belt and its effect on hydrocarbon accumulation: A case study of Dengying Formation in Sichuan Basin. Chinese Journal of Geology, 2021, 56(3): 867-883.
[12]
张玺华, 彭瀚霖, 田兴旺, 等. 川中地区震旦系灯影组丘滩相储层差异性对勘探模式的影响. 天然气勘探与开发, 2019, 42(2): 13-21.
ZHANG Xihua, PENG Hanlin, TIAN Xingwang, et al. Influence of difference among bioherm beach facies reservoirs on exploration model: An example from Sinian Dengying Formation, central Sichuan Basin. Natural Gas Exploration and Development, 2019, 42(2): 13-21.
[13]
邓韦克, 刘翔, 李翼杉. 川中震旦系灯影组储集层形成及演化研究. 天然气勘探与开发, 2015, 38(3): 12-16.
DENG Weike, LIU Xiang, LI Yishan. Reservoir formation and evolution of Sinian Dengying Formation, central Sichuan Basin. Natural Gas Exploration and Development, 2015, 38(3): 12-16.
[14]
李博媛, 张殿伟, 庞雄奇, 等. 川北米仓山地区震旦系灯影组差异化岩溶作用分析. 天然气地球科学, 2015, 26(11): 2075-2084.
LI Boyuan, ZHANG Dianwei, PANG Xiongqi, et al. Differential karstification analysis of the Sinian Dengying Formation in northern Sichuan. Natural Gas Geoscience, 2015, 26(11): 2075-2084.
[15]
李启桂, 李克胜, 周卓铸, 等. 四川盆地桐湾不整合面古地貌特征与岩溶分布预测. 石油与天然气地质, 2013, 34(4): 516-521.
LI Qigui, LI Kesheng, ZHOU Zhuozhu, et al. Palaeogeomorphology and karst distribution of Tongwan unconformity in Sichuan Basin. Oil & Gas Geology, 2013, 34(4): 516-521.
[16]
张林, 万玉金, 杨洪志, 等. 四川盆地高石梯构造灯影组四段溶蚀孔洞型储层类型及组合模式. 天然气地球科学, 2017, 28(8): 1191-1198.
ZHANG Lin, WAN Yujin, YANG Hongzhi, et al. The type and combination pattern of karst vuggy reservoir in the fourth member of the Dengying Formation of Gaoshiti structure in Sichuan Basin. Natural Gas Geoscience, 2017, 28(8): 1191-1198.
[17]
ZHOU You, YANG Fengli, JI Youliang, et al. Characteristics and controlling factors of dolomite karst reservoirs of the Sinian Dengying Formation, central Sichuan Basin, southwestern China. Precambrian Research, 2020, 343: 105708.
[18]
彭军, 褚江天, 陈友莲, 等. 四川盆地高石梯-磨溪地区下寒武统沧浪铺组沉积特征. 岩性油气藏, 2020, 32(4): 12-22.
PENG Jun, CHU Jiangtian, CHEN Youlian, et al. Sedimentary characteristics of Lower Cambrian Canglangpu Formation in Gaoshiti-Moxi area, Sichuan Basin. Lithologic Reservoirs, 2020, 32(4): 12-22.
[19]
何溥为, 胥旺, 张连进, 等. 川中磨溪-高石梯地区栖霞组白云岩特征及成因机制. 沉积学报, 2021, 39(6): 1532-1545.
HE Puwei, XU Wang, ZHANG Lianjin, et al. Characteristics and genetic mechanism of Qixia Formation dolomite in MoxiGaoshiti area, central Sichuan Basin. Acta Sedimentologica Sinica, 2021, 39(6): 1532-1545.
[20]
邢凤存, 侯明才, 林良彪, 等. 四川盆地晚震旦世-早寒武世构造运动记录及动力学成因讨论. 地学前缘, 2015, 22(1): 115-125.
XING Fengcun, HOU Mingcai, LIN Liangbiao, et al. The records and its dynamic genesis discussion of tectonic movement during the Late Sinian and the Early Cambrian of Sichuan Basin. Earth Science Frontiers, 2015, 22(1): 115-125.
[21]
杨帆, 刘立峰, 冉启全, 等. 四川盆地磨溪地区灯四段风化壳岩溶储层特征. 岩性油气藏, 2020, 32(2): 43-53.
YANG Fan, LIU Lifeng, RAN Qiquan, et al. Characteristics of weathering crust karst reservoir of Deng 4 member in Moxi area, Sichuan Basin. Lithologic Reservoirs, 2020, 32(2): 43-53.
[22]
李英强, 何登发, 文竹. 四川盆地及邻区晚震旦世古地理与构造-沉积环境演化. 古地理学报, 2013, 15(2): 231-245.
LI Yingqiang, HE Dengfa, WEN Zhu. Palaeogeography and tectonic-depositional environment evolution of the Late Sinian in Sichuan Basin and adjacent areas. Journal of Palaeogeography(Chinese Edition), 2013, 15(2): 231-245.
[23]
夏青松, 黄成刚, 杨雨然, 等. 四川盆地高石梯-磨溪地区震旦系灯影组储层特征及主控因素. 地质论评, 2021, 67(2): 441-458.
XIA Qingsong, HUANG Chenggang, YANG Yuran, et al. Reservoir characteristics and main controlling factors of oil and gas accumulation of Dengying Formation, Sinian system, in GaoshitiMoxi area, Sichuan Basin. Geological Review, 2021, 67(2): 441-458.
[24]
邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 2014, 41(3): 278-293.
ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China. Petroleum Exploration and Development, 2014, 41(3): 278-293.
[25]
刘树根, 孙玮, 罗志立, 等. 兴凯地裂运动与四川盆地下组合油气勘探. 成都理工大学学报(自然科学版), 2013, 40(5): 511-520.
LIU Shugen, SUN Wei, LUO Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian strata in Sichuan Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(5): 511-520.
[26]
徐欣, 胡明毅, 高达. 磨溪-高石梯地区灯影组四段微生物岩沉积特征及主控因素. 中国海上油气, 2018, 30(2): 25-34.
XU Xin, HU Mingyi, GAO Da. Sedimentary characteristics and main control factors for microbialite of the fourth member of Dengying Formation in Moxi-Gaoshiti area, central Sichuan Basin. China Offshore Oil and Gas, 2018, 30(2): 25-34.
[27]
YANG Wei, WEI Guoqi, XIE Wuren, et al. Hydrocarbon accumulation and exploration prospect of mound-shoal complexes on the platform margin of the fourth member of Sinian Dengying Formation in the east of Mianzhu-Changning intracratonic rift, Sichuan Basin, SW China. Petroleum Exploration and Development, 2020, 47(6): 1262-1274.
[28]
闫海军, 邓惠, 万玉金, 等. 四川盆地磨溪区块灯影组四段强非均质性碳酸盐岩气藏气井产能分布特征及其对开发的指导意义. 天然气地球科学, 2020, 31(8): 1152-1160.
YAN Haijun, DENG Hui, WAN Yujin, et al. The gas well productivity distribution characteristics in strong heterogeneity carbonate gas reservoir in the fourth member of Dengying Formation in Moxi area, Sichuan Basin. Natural Gas Geoscience, 2020, 31(8): 1152-1160.
[29]
周文, 徐浩, 余谦, 等. 四川盆地及其周缘五峰组-龙马溪组与筇竹寺组页岩含气性差异及成因. 岩性油气藏, 2016, 28(5): 18-25.
ZHOU Wen, XU Hao, YU Qian, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas. Lithologic Reservoirs, 2016, 28(5): 18-25.
[30]
徐昉昊, 袁海锋, 徐国盛, 等. 四川盆地磨溪构造寒武系龙王庙组流体充注和油气成藏. 石油勘探与开发, 2018, 45(3): 426-435.
XU Fanghao, YUAN Haifeng, XU Guosheng, et al. Fluid charging and hydrocarbon accumulation in the Cambrian Longwangmiao Formation of Moxi structure, Sichuan Basin, SW China. Petroleum Exploration and Development, 2018, 45(3): 426-435.
[31]
文龙, 杨跃明, 游传强, 等. 川中-川西地区灯影组沉积层序特征及其对天然气成藏的控制作用. 天然气工业, 2016, 36(7): 8-17.
WEN Long, YANG Yueming, YOU Chuanqiang, et al. Characteristics of Dengying Fm sedimentary sequence in the centralwestern Sichuan Basin and their controlling effect on gas accumulation. Natural Gas Industry, 2016, 36(7): 8-17.
[32]
柴寒冰. 磨溪地区灯影组灯四段持续性古隆起背景下的古岩溶储层结构特征研究[D]. 成都: 成都理工大学, 2020.
CHAI Hanbing. Structural characteristics of paleokarst reservoirs under the background of persistent Paleo-uplift of the fourth member of Dengying Formation in Moxi[D]. Chengdu: Chengdu University of Technology, 2020.
[33]
余继峰, 李增学. 测井数据小波变换及其地质意义. 中国矿业大学学报, 2003, 32(3): 336-339.
YU Jifeng, LI Zengxue. Wavelet transform of logging data and its geological significance. Journal of China University of Mining & Technology, 2003, 32(3): 336-339.
[34]
邢凤存, 胡华蕊, 侯明才, 等. 构造和古地理控制下的碳酸盐岩储集体旋回和集群性探讨: 以四川盆地为例. 地球科学, 2018, 43(10): 3540-3552.
XING Fengcun, HU Huarui, HOU Mingcai, et al. Carbonate reservoirs cycles and assemblages under the tectonic and palaeogeography control: A case study from Sichuan Basin. Earth Science, 2018, 43(10): 3540-3552.
[35]
FENG Qingfu, XIAO Yuxiang, HOU Xiulin, et al. Logging identification method of depositional facies in Sinian Dengying Formation of the Sichuan Basin. Petroleum Science, 2021, 18(4): 1086-1096.
[36]
杨威, 魏国齐, 谢武仁, 等. 古隆起在四川盆地台内碳酸盐岩丘滩体规模成储中的作用. 天然气工业, 2021, 41(4): 1-12.
YANG Wei, WEI Guoqi, XIE Wuren, et al. Role of paleouplift in the scale formation of intra-platform carbonate mound-bank body reservoirs in the Sichuan Basin. Natural Gas Industry, 2021, 41(4): 1-12.
[37]
张红英, 周肖, 王安庆. 四川盆地安岳区块灯影组缝洞型储层测井评价方法. 测井技术, 2018, 42(1): 91-97.
ZHANG Hongying, ZHOU Xiao, WANG Anqing. Log evaluation method for fractured-vuggy reservoir in the Dengying Formation of the Anyue block, Sichuan Basin. Well Logging Technology, 2018, 42(1): 91-97.
[38]
CHEN Yana, SHEN Anjiang, PAN Liyin, et al. Features, origin and distribution of microbial dolomite reservoirs: A case study of 4 th member of Sinian Dengying Formation in Sichuan Basin, SW China. Petroleum Exploration and Development, 2017, 44(5): 745-757.
[39]
周红飞, 戴鑫, 贾敏, 等. 川中古隆起北斜坡震旦系灯影组二段油气成藏特征. 岩性油气藏, 2022, 34(5): 130-138.
ZHOU Hongfei, DAI Xin, JIA Min, et al. Hydrocarbon accumulation characteristics of the second member of Sinian Dengying Formation in the north slope of central Sichuan paleo-uplift. Lithologic Reservoirs, 2022, 34(5): 130-138.
[40]
ZHOU Zheng, WANG Xinzhi, YIN Ge, et al. Characteristics and genesis of the(Sinian)Dengying Formation reservoir in central Sichuan, China. Journal of Natural Gas Science and Engineering, 2016, 29(2): 311-321.
[41]
HOU Lianhua, YANG Fan, YANG Chun, et al. Characteristics and formation of Sinian(Ediacaran)carbonate karstic reservoirs in Dengying Formation in Sichuan Basin, China. Petroleum Research, 2021, 6(2): 144-157.
[42]
JIN Mindong, ZENG Wei, TAN Xiucheng, et al. Characteristics and controlling factors of beach-controlled karst reservoirs in Longwangmiao Formation, Moxi-Gaoshiti area, Sichuan Basin, SW China. Petroleum Exploration and Development, 2014, 41(6): 650-660.
[43]
王良军. 川北地区灯影组四段优质储层特征及控制因素. 岩性油气藏, 2019, 31(2): 35-45.
WANG Liangjun. Characteristics and controlling factors of highquality reservoirs of the fourth member of Dengying Formation in northern Sichuan Basin. Lithologic Reservoirs, 2019, 31(2): 35-45.
[44]
张道伟. 四川盆地未来十年天然气工业发展展望. 天然气工业, 2021, 41(8): 34-45.
ZHANG Daowei. Development prospect of natural gas industry in the Sichuan Basin in the next decade. Natural Gas Industry, 2021, 41(8): 34-45.
[45]
焦方正, 杨雨, 冉崎, 等. 四川盆地中部地区走滑断层的分布与天然气勘探. 天然气工业, 2021, 41(8): 92-101.
JIAO Fangzheng, YANG Yu, RAN Qi, et al. Distribution and gas exploration of the strike-slip faults in the central Sichuan Basin. Natural Gas Industry, 2021, 41(8): 92-101.