岩性油气藏  2023, Vol. 35 Issue (4): 90-101       PDF    
×
准噶尔盆地阜康断裂带上盘二叠系芦草沟组页岩油地质特征及勘探潜力
刘海磊1, 朱永才1, 刘龙松1, 尹鹤1, 王学勇1, 杜小弟2    
1. 中国石油新疆油田公司 勘探开发研究院, 新疆 克拉玛依 834000;
2. 中国地质调查局 油气资源调查中心, 北京 100029
摘要: 利用露头、岩心薄片及地球化学分析资料,对准噶尔盆地阜康断裂带上盘二叠系芦草沟组的岩性、沉积古环境、烃源岩评价及分布特征进行了研究,并探讨了成藏模式。研究结果表明:①阜康断裂带芦草沟组发育砂岩、泥页岩、碳酸盐岩等多种岩性,以灰黑色、黑色油页岩为主,厚度为200~600 m,见碳酸盐岩与泥页岩互层,碳酸盐岩夹层中可见沥青、油迹。②研究区芦草沟组沉积时期为半深湖—深湖相,气候以干热为主,间歇性出现温湿气候,古水体为微咸水—咸水;博格达山北麓为沉积湖盆的中心,具有更好的沉积和保存条件。③研究区烃源岩有机质丰度高,野外露头岩心Ro值为0.74%~1.28%,钻井岩心TOC值为0.92%~4.48%,主要为Ⅰ和Ⅱ1型,成熟度较高,生烃潜量大,S1+S2多大于20 mg/g,为成熟优质烃源岩;博格达山北麓比西侧烃源岩发育规模更大,成熟度更高,氯仿沥青“A”含量多高于1 200×10-6。④研究区芦草沟组油藏受控于圈闭和断层,北部高陡带油藏多出露地表,遭受破坏,以稠油为主,中部鼻隆带构造稳定,发育8处圈闭;中部鼻隆带油藏表现出自生自储、多期充注的特征,区域内东南部为页岩油勘探的“甜点”区。
关键词: 烃源岩    页岩油气    有机质丰度    芦草沟组    二叠系    阜康断裂带上盘    准噶尔盆地    
Geological characteristics and exploration potential of shale oil of Permian Lucaogou Formation in hanging wall of Fukang fault zone, Junggar Basin
LIU Hailei1, ZHU Yongcai1, LIU Longsong1, YIN He1, WANG Xueyong1, DU Xiaodi2    
1. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
2. Oil & Gas Survey, China Geological Survey, Beijing 100029, China
Abstract: Based on outcrops, cores and geochemistry analytical data, the lithologies, sedimentary paleoenvironment, the evaluation and distribution characteristics of source rocks of Permian Lucaogou Formation in the hanging wall of Fukang fault zone in Junggar Basin were analyzed, and the hydrocarbon accumulation model was discussed. The results show that: (1)There were sandstone, shale and carbonate rocks developed in Lucaogou Formation in Fukang fault zone, and they were dominated by gray-black and black oil shale with thickness of 200-600 m. The carbonate rocks and shale were interbedded, and asphalt and oil traces can be seen in carbonate interbeds.(2)The Lucaogou Formation in the study area was deposited during the semi-deep lake to deep lake facies, the climate was mainly dry and hot, with intermittent warm and wet climate, and the ancient water body was brackish-saline water. The northern foot of Bogda Mountain was the center of the sedimentary lake basin, which has better deposition and preservation conditions.(3)It was a high mature and high-quality hydrocarbon source rock with abundance of organic matter in the study area, with outcrops Ro of 0.74%-1.28% and drilling core TOC of 0.92%-4.48%. They are mainly typeⅠ and Ⅱ1 and have high hydrocarbon potential, with S1+S2 greater than 20 mg/g. The hydrocarbon source rocks at the northern foot of Bogda Mountain has a larger scale of development and higher maturity than that in the western side, and the chloroform asphalt "A" content is greater than 1 200× 10-6.(4)The reservoirs of Lucaogou Formation in the study area are controlled by traps and faults. The reservoirs in the northern high steep zone are mostly exposed on the surface, damaged, and dominated by thick oil. The central nasal ridge zone is tectonically stable, with eight traps developed. The reservoirs in the central nasal ridge zone are characterized by self-generation and multi-phase filling. The southeastern part can be designated as the sweet spot area for shale oil exploration.
Key words: source rocks    shale oil and gas    organic matter abundance    Lucaogou Formation    Permian    hanging wall of Fukang fault zone    Junggar Basin    
0 引言

准噶尔盆地是我国西北部的重要含油气盆地,盆地内二叠系发育2套主力烃源岩,分别是西北缘地区的风城组烃源岩及东部地区芦草沟组烃源岩[1-2],其中芦草沟组烃源岩为典型的页岩油,在准东地区各一级构造单元内均有发育[3],目前已在盆地内吉木萨尔凹陷、阜康凹陷和北三台凸起取得了重大油气勘探成果。研究区阜康断裂带位于博格达山前,勘探面积达2 800 km2,已探明含油储量3 409× 104 t,是典型的油气富集带,主要烃源岩为中二叠统芦草沟组[4-6]。芦草沟组烃源岩在区内分布广泛,与该区毗邻的吉木萨尔凹陷发育的芦草沟组优质烃源岩很大程度上受益于中二叠世博格达山前的一系列构造运动及火山-热液活动,富含营养元素的幔源物质为有机质的生长繁育以及保存提供了条件,因此,可以认为研究区也具备发育优质烃源岩的条件。近年来,在区内部署的部分勘探井也获得了不错的油气成果,如XJC1井试油获连续油气显示[7-9],这表明阜康断裂带芦草沟组具有很大的页岩油勘探开发潜力[10]。然而,由于受邻近博格达山脉的复杂构造活动和多期改造活动的影响较大,还伴有一定程度的火山-热液活动影响,博格达山周缘盆-山关系复杂,研究程度较低[11-13],缺乏相关的烃源岩质量综合评价以及有机质类型的具体研究。此外,由于页岩油通常聚集在页岩(烃源岩)层系、泥页岩和致密夹层中,表现为烃源岩与储层同层的特征,对其开发需要使用与页岩气类似的水平井和水力压裂技术[14-15],也为芦草沟组烃源岩的研究带来了挑战。与典型的海相页岩油藏如美国Williston盆地Bakken组页岩油[16]、Maverick盆地Eagle Ford组页岩油[17-19]相比,研究区芦草沟组烃源岩作为咸化湖相页岩油的代表具有更强的非均质性[20-21],这种非均质性不仅体现在同一构造单元内烃源岩的纵向差异,也体现在不同的构造单元之间的差异上[22-23]。与典型湖相页岩油如我国鄂尔多斯盆地三叠系延长组[2, 14]相比,页岩油储层存在差异,阜康断裂带页岩单层厚度更小,岩性更加复杂[24-25],油质也更黏稠。因此,国内外已有的理论和技术认识并不能完全适用于对该区芦草沟组页岩油的研究。

通过对准噶尔盆地阜康断裂带上盘二叠系芦草沟组露头和钻井取心样品进行分析,从岩石学、矿物学、地球化学等方面对烃源岩质量、古沉积环境演化以及油气勘探开发潜力等进行综合评价,以期为该区芦草沟组页岩油气勘探提供依据。

1 地质概况

准噶尔盆地阜康断裂带位于新疆北天山山脉的博格达山前,为盆地南缘冲断带的二级构造带,是由多个褶皱和断裂组成的复杂构造带。区域内发育一系列近东西走向的断裂,既有区域性断裂,也有层系间的中小断裂,基本为南倾逆断裂,多沿博格达山北缘呈北凸弧形展布。在褶皱带发育的阜康断裂是一条形成时间早,且晚期还在活动的区域性大型逆冲推覆断裂,延伸长度大于40 km,推覆距离为15~20 km,走势基本与博格达山平行,断面呈上陡下缓状,地表最大倾角为45°(图 1a)。研究区阜康断裂带上盘地质剖面及多口钻井资料揭示,区域内自下而上发育石炭系、二叠系、三叠系、侏罗系、白垩系、古近系、新近系及第四系,以二叠系、三叠系和侏罗系分布最广,烃源岩主要发育在中二叠统芦草沟组。芦草沟组深度为3 000~4 000 m,厚度为200~600 m,按岩性的差异自下而上可划分为芦一段和芦二段,2段均发育泥岩、白云岩、粉砂质泥岩、凝灰质白云岩和沉凝灰岩,但各段的岩性比例存在一定差异,粉砂岩仅在芦一段发育,泥质白云岩仅在芦二段发育。整体而言,芦一段储层更为发育,芦二段烃源岩更为发育(图 1b)。

下载原图 图 1 准噶尔盆地阜康断裂带构造单元划分(a)及二叠系芦草沟组岩性地层综合柱状图(b) Fig. 1 Structural units of Fukang fault zone(a)and stratigraphic column of Permian Lucaogou Formation(b)in Junggar Basin

受海西、燕山、喜马拉雅等多期次构造运动叠加影响,阜康断裂带内构造变形及油气成藏过程极为复杂[26-30]。古生界—中生界,博格达山经历了一系列急剧抬升,造成断裂带上盘地层挤压变形,而阜康断裂以北的凹陷区构造运动相对较弱,形成了逆冲带[31-33],最终形成了南北向呈叠瓦冲断-阶梯抬升的三排构造,即北部高陡带、中部鼻隆带以及南部断褶带。南部断褶带和北部高陡带局部地区二叠系和三叠系裸露地表,而中部鼻隆带在二叠系和三叠系沉积时并未遭到大程度的破坏[34],在深部广泛发育芦草沟组厚层深灰色泥页岩、云质泥岩、油页岩[35-37]图 2)。

下载原图 图 2 准噶尔盆地阜康断裂带上盘过XJC1—J15井剖面地层特征(剖面位置见图 1 Fig. 2 Geological profile across wells XJC1 to J15 in the hanging wall of Fukang fault zone, Junggar Basin
2 芦草沟组页岩特征 2.1 岩性特征

准噶尔盆地阜康断裂带二叠系芦草沟组野外露头显示:组内发育水平层系,层系间距小;灰黑色、黑色泥页岩发育,多呈带状集中分布,东西向总长度约143 km,宽约10 km,厚度为200~600 m,可见水下扇扇中水道间灰黑色油页岩、书页状油页岩;局部发育灰褐色粉—细砂岩、粉砂质泥岩,大多呈条带状夹在页岩或泥岩中,受外部物源供给和距离物源的远近影响,含砂质条带的厚度和层数有差异,在一些相对较厚的砂质条带中可见小型流水沙纹层理,可见水下扇扇中水道薄层粉—细砂岩或泥质粉砂岩(图 3)。

下载原图 图 3 准噶尔盆地阜康断裂带二叠系芦草沟组野外露头特征 Fig. 3 Field outcrop characteristics of Permian Lucaogou Formation in Fukang fault zone, Junggar Basin

对研究区大龙口剖面及典型井BD1井芦草沟组32个样品进行镜下薄片观察(图 4)发现:①芦草沟组发育砂岩、泥页岩、碳酸盐岩等多种岩性,发育碳酸盐岩与泥页岩互层,可见明显的石英和长石颗粒,有机质发育,碳酸盐岩夹层中可见沥青、油迹。②相较野外剖面,BD1井的岩心中沥青及碳酸盐岩互层更明显;碳酸盐岩的厚度更小,单层厚度多为10~20 m,而剖面中碳酸盐岩厚度为30~50 m;油井岩心中砂岩的分选性也更好。分析认为二者的差异可能是沉积水体变化和构造抬升所致。

下载原图 图 4 准噶尔盆地阜康断裂带大龙口剖面和BD1井二叠系芦草沟组岩石矿物学特征 (a)粉砂岩,碎屑组分为石英、长石和火山碎屑,粒间泥质杂基充填,BD1井,1 449.03 m;(b)白云质页岩,页岩裂缝中充填沥青,可见细砂岩条带,BD1井,1 453.21 m;(c)白云质页岩,页岩裂缝充填沥青,大龙口剖面,海拔52.31 m;(d)白云质页岩,白云石呈层状分布,微裂缝充填沥青,BD1井,1 479.32 m;(e)白云岩裂缝中充填沥青,BD1井,1 531.17 m;(f)泥质粉砂岩,粒间泥质充填,见白云石胶结物,大龙口剖面,海拔62.17 m;(g)富有机质页岩中的沥青条带,BD1井,1 552.21 m;(h)纹层状泥页岩,见有机质纹层,BD1井,1 532.41 m;(i)泥质粉砂岩,粉砂部分缺少有机质,泥岩部分富含沥青,大龙口剖面,海拔143.21 m;(j)白云质粉砂岩,白云石强烈交代碎屑颗粒,大龙口剖面,海拔162.21 m;(k)白云质粉砂岩中的细砂岩条带,大龙口剖面,海拔128.21 m;(l)富有机质页岩中的沥青条带,见有机质孔,大龙口剖面,海拔138.39 m。 Fig. 4 Petrology and mineralogy of Permian Lucaogou Formation of Dalongkou profile and well BD 1 in Fukang fault zone, Junggar Basin
2.2 古环境

无机元素在指示古气候、古环境方面具有较高的敏感性,可以指示古水体和古气候环境。

(1)古水体

研究区芦草沟组典型剖面Sr/Ba值多为1.0~5.0,指示咸水沉积环境,少部分样品的Sr/Ba值为0.5~1.0,指示半咸水古水体环境[31]。对8个样品进行β-胡萝卜烷指数分析,其中6个样品β-胡萝卜烷指数小于1,指示淡水—微咸水的沉积环境,仅2个样品大于10,指示较高盐度的水体环境[38]

伽马蜡烷常用来表征水体分层的特征,Haven等[39]认为这可能是四膜虫醇被还原后的产物。盐湖或咸化湖通常含有盐类物质,一些溶于水体的物质在重力作用下会沉降到水体底部,由于密度的差异造成水体分层,而分层界面一般情况下会生长食菌的纤毛虫,这种生物死亡后体内的四膜虫醇在后期沉积成岩过程中形成伽马蜡烷这一生物标志化合物[40]。同时,水体分层往往意味着水体具有较高的还原性和盐度,因此伽马蜡烷的丰度可用来作为揭示水体盐度的指标[41]。研究区伽马蜡烷的丰度为0.15~0.30,指示微咸水环境(图 5a)。综合分析认为阜康断裂带上盘沉积于微咸水—咸水环境。

下载原图 图 5 准噶尔盆地阜康断裂带沉积环境β-胡萝卜烷指数(a)以及伽马蜡烷指数Ph/nC18和Pr/nC17(b)分布特征 Fig. 5 β-carotane(a)and gammacerane Ph/nC18 and Pr/nC17(b)of depositional environment in Fukang fault zone, Junggar Basin

(2)古气候

研究区芦草沟组典型剖面的Sr/Cu值多为10~80,指示干热环境,少部分样品的Sr/Cu<10,指示温湿气候[33]。姥鲛烷与相邻的正构烷烃C17比值(Pr/nC17)、植烷与相邻的正构烷烃C18比值(Ph/nC18)也可以用于对沉积环境的判别[41]。对研究区8个样品进行分析,6个样品的Pr/nC17和Ph/nC18值为1.0~10.0,指示混合相沉积环境,仅2个样品的Pr/nC17和Ph/nC18值为0.1~1.0,指示湖相沉积环境,整体表现出湖相-混合相分布特征(图 5b),而湖相就是相对温湿的气候,而当气候较为干旱时,蒸发量增加,会从湖相向混合相转换。综合分析认为研究区古气候以干热为主,间歇性出现温湿气候。

(3)古环境

研究区芦草沟组沉积时期,博格达山脉尚未形成,整体属于半深湖—深湖相(图 6a)。该套烃源岩受构造改造影响较大,在早—中二叠世处于裂谷盆地演化阶段,晚二叠世—三叠纪处于挤压挠曲盆地演化阶段,早—中侏罗世处于伸展坳陷盆地演化阶段,中侏罗世—新近纪处于前陆盆地演化阶段,新近纪—第四纪处于再生前陆盆地演化阶段,经历了复杂的构造改造运动形成现今南北陡峭,中部平缓的构造格局(图 6b[42]。与博格达山西侧(红雁池和妖魔山地区)相比,博格达山北麓芦草沟组位于湖相沉积的中心区域,其物源补充和有机质保存条件都更好,烃源岩发育规模也更大。

下载原图 图 6 准噶尔盆地阜康断裂带古环境二叠系芦草沟组(a)—现今演化(b) Fig. 6 Evolution of paleoenvironment from Permian Lucaogou Formation(a)to present(b)in Fukang fault zone, Junggar Basin
2.3 烃源岩评价与分布 2.3.1 烃源岩评价

较高的有机质丰度是烃源岩生烃的物质根本,有机质丰度在烃源岩质量和资源潜力评价中尤为重要[43-45]。以总有机碳含量(TOC)、生烃潜量(游离烃含量S1 + 热解烃含量S2)以及氯仿沥青“A”含量等3个指标评价研究区6条二叠系芦草沟组烃源岩露头的有机质丰度,其中博格达山西侧露头2条,分别为红雁池露头和妖魔山露头;博格达山北麓露头4条,分别为白杨沟、西大龙口、小龙口以及奇台庄露头(表 1)。

下载CSV 表 1 准噶尔盆地博格达山前野外露头二叠系芦草沟组烃源岩潜力评价 Table 1 Generation potential of source rocks of Permian Lucaogou Formation in the field outcrops in the Bogda piedmont, Junggar Basin

6条烃源岩露头的平均TOC值为4.51%,其中博格达山西侧不同剖面烃源岩的TOC值差异较大,红雁池和妖魔山烃源岩的TOC值分别为1.87% 和7.67%;博格达山北麓不同剖面烃源岩的TOC值较接近,为3.01%~5.45%,普遍高于4.00%,是优质烃源岩[38, 46-47]表 1)。研究区平均生烃潜量(S1+ S2)与TOC呈明显正相关关系。博格达山西侧红雁池和妖魔山烃源岩生烃潜量分别为3.14 mg/g和41.00 mg/g;博格达山北麓奇台庄剖面的生烃潜量为5.90 mg/g,其余剖面生烃潜量相当,为20.80~23.00 mg/g,为优质烃源岩(图 7a)。氯仿沥青“A”指示烃源岩中的可溶有机质含量,氯仿沥青“A”含量较高指示较高的S1值,表明具有页岩油气潜力。研究区6条烃源岩露头中氯仿沥青“A”含量为(90~3 000)×10-6,博格达山北麓露头氯仿沥青“A”含量更高,白杨沟、奇台庄和小龙口的氯仿沥青“A”含量都高于1 200× 10-6,最高为奇台庄露头烃源岩,达3 000×10-6图 7b表 1),与吉木萨尔凹陷页岩油区烃源岩含量相当[42],具有较高的页岩油气潜力。

下载原图 图 7 准噶尔盆地阜康断裂带二叠系芦草沟组露头烃源岩评价 Fig. 7 Evaluation of outcrop source rocks of Permian Lucaogou Formation in Fukang fault zone, Junggar Basin

研究区露头烃源岩干酪根显微组分分析显示均为腐泥组,有机质类型以Ⅱ1和Ⅰ型为主,成熟度跨度较大,Ro为0.74%~1.28%,处于成熟—高成熟阶段(表 1)。综合以上分析认为该套露头烃源岩为有效烃源岩,达到了生排烃的门限,其中博格达山北麓烃源岩质量比西侧更好,页岩油潜力更大。

2.3.2 烃源岩分布

自博格达山前至凹陷区烃源岩厚度逐渐变小,阜康断裂带是芦草沟组的沉积中心,烃源岩厚度大,博格达山北麓烃源岩厚度为200~600 m,西侧厚度为100~400 m(图 8)。

下载原图 图 8 准噶尔盆地博格达山周缘二叠系芦草沟组烃源岩厚度分布 Fig. 8 Thickness contour of source rocks of Permian Lucaogou Formation in the periphery of Bogda Mountain, Junggar Basin

结合博格达山前露头的烃源岩评价以及古环境演化分析可初步断定,博格达山北麓页岩油的勘探开发潜力更大。对该区域内3口典型井实钻取心测试也证实烃源岩质量较好(图 9):①XJC1井芦草沟组烃源岩具有明显的砂泥互层特征,含油气性主要为荧光级,平均TOC值为1.46%,平均Tmax值为474 ℃,有机质类型为Ⅱ2和Ⅲ型,平均生烃潜量S1+ S2为2.16 mg/g,为高成熟中等—好烃源岩。②ZY4井钻遇芦草沟组厚度543.50 m,岩性为灰色—灰黑色粉砂岩、泥质粉砂岩、粉砂质泥岩、泥岩及页岩,单层烃源岩厚度为0.74~22.00 m,共有32段,累计厚度为204.20 m,TOC值为0.51%~1.97%,平均为0.92%,含油气性显示较XJC1井更好,含油级别主要为油斑级。③Q1井在芦草沟组钻遇478.00 m厚层泥岩,泥岩夹层中伴有粉砂岩,见油斑显示,TOC值为2.15%~7.03%,平均为4.48%,Ro为0.81%~0.92%,平均为0.86%,有机质类型为Ⅰ,Ⅱ1型,平均生烃潜量S1 +S2大于29.00 mg/g,为成熟优质烃源岩。此外,取心样品中还富含壳质组分,母质以水生浮游绿藻类为主,为页岩油的系统形成提供了必要的物质条件。综上所述,研究区烃源岩广泛发育,厚度和规模均较大,具备勘探开发潜力,其中博格达山北麓芦草沟组烃源岩沉积厚度最大、含油性好,为优质烃源岩,是区内页岩油开发的最有利区块。

下载原图 图 9 准噶尔盆地阜康断裂带二叠系芦草沟组烃源岩岩性柱状图 Fig. 9 Stratigraphic column of source rocks of Permian Lucaogou Formation in Fukang fault zone, Junggar Basin
3 成藏机理 3.1 构造控制油藏分布

准噶尔盆地阜康断裂带二叠系芦草沟组油气成藏主要受控于构造作用[48-49],断裂断层也有效进行了控藏。由于芦草沟组沉积时期博格达山变形强度“西强东弱”,因此整体而言,博格达山东北侧发育的芦草沟组烃源岩具有较好的保存环境,有利于形成优质烃源岩,而博格达山西部地层发育相对较陡,不利于油气藏的保存。博格达山北侧可划分为南部断褶带、中部鼻隆带以及北部高陡带3个大区块。其中,南部断褶带和北部高陡带分别与博格达山、吉木萨尔凹陷相邻,地层发育相对较陡,地层倾角最大可达80°,地层普遍出露地表,破碎较严重,油藏也多遭破坏。相比之下,中部鼻隆带构造相对稳定,发育多个背斜高点,构造背景更好,更有利于油气保存(图 10)。

下载原图 图 10 准噶尔盆地阜康断裂带二叠系芦草沟组油气藏分布特征 Fig. 10 Reservoirs distribution of Permian Lucaogou Formation in Fukang fault zone, Junggar Basin

目前研究区钻井主要集中在北部高陡带,结合实钻资料分析,该区域油气显示较活跃,但均以稠油为主,如区内东南部BC1井岩心见沥青及重质油,原油密度为0.91~0.93 g/cm3,油质偏重,饱和烃色谱基线漂移,表明原油遭受过轻微降解作用[26]图 11);区域西北部T44井取心获油浸级岩心,岩心含油面积100%,油质稠。研究区西北部T35井取心获油迹级岩心,微细裂缝发育,断面被黑褐色稠油浸染。中部鼻隆带XJC1井芦草沟组试油获高熟轻质油气,原油密度0.82 g/cm3,累产气高于10×104 m3(据中国地质调查局资料)。

下载原图 图 11 准噶尔盆地阜康断裂带BC1井二叠系芦草沟组烃源岩生物标志物特征 Fig. 11 Biomarker compositions of source rocks of Permian Lucaogou Formation of well BC1 in Fukang fault zone, Junggar Basin
3.2 油藏特征

(1)自生自储

研究区芦草沟组在地震剖面上呈现泥页岩与周缘碳酸盐岩脆性矿物源储一体的组合特征(图 12),油气源对比也发现了该区芦草沟组油气自生自储。泥页岩有机质母质来源以水生浮游绿藻类为主,沉积环境主要为还原环境,有利于有机质的保存和油气的生成,油产率高、生烃效率高,生成的油气渗透到碳酸盐岩夹层,形成了源储一体的油气系统。

下载原图 图 12 准噶尔盆地阜康断裂带上盘过XJC1—BC1井地震剖面(剖面位置见图 10 Fig. 12 Seismic section across wells XJC1 to BC1 in the hanging wall of Fukang fault zone, Junggar Basin

(2)多期充注

对研究区典型油气藏进行解剖,发现至少存在2期成藏的证据。北部高陡带JZK1井不同样品的流体包裹体温度分别为55~65 ℃,85~95 ℃,100~110 ℃,且包裹体颜色为黄绿、蓝绿荧光,表现为多期成藏的特征。在中部鼻隆带ZY4井的岩心中发现稠油及轻质油气,证实有早期和晚期原油充注。结合钻井及生烃演化模拟,北部高陡带和南部断裂带以早期生烃为主,晚期生烃停滞,而中部鼻隆带构造稳定,地层埋深较大,以二次生烃为主,目前已过了大量生油、排油期,达到生气阶段。

综合分析认为,中部鼻隆带东南部3口井均发育优质烃源岩,而其西北部圈闭更大,可能为页岩油勘探的新“甜点”区,有待进一步布井完善及深化研究。

4 结论

(1)准噶尔盆地阜康断裂带芦草沟组广泛发育,规模大,以油页岩为主,发育碳酸盐岩与泥页岩互层,碳酸盐岩夹层中可见沥青、油迹,探井岩心比野外剖面的沥青和碳酸盐岩互层更明显,碳酸盐岩的厚度更小。优质烃源岩和油气藏集中发育在中部鼻隆带。

(2)富康断裂带芦草沟组沉积于干旱炎热的环境,水体盐度为微咸水—咸水。博格达山北麓芦草沟组沉积时期位于湖相沉积中心区域,有更好的物源,有机质条件及保存环境更为优越。

(3)富康断裂带芦草沟组烃源岩发育,有机质丰度高,成熟度较高,主要为Ⅰ和Ⅱ1型,生烃潜力大,为成熟优质烃源岩;其中博格达山北麓比西侧烃源岩发育规模更大,成熟度更高,是区域内最有利的页岩油气勘探区。

(4)阜康断裂带芦草沟组油藏受控于圈闭和断层,北部高陡带油藏多出露地表,遭受破坏,以稠油为主,中部鼻隆带构造稳定,有利于油气的保存,发育8处圈闭;中部鼻隆带的油藏表现出自生自储、多期充注的特征,区域内东南部为页岩油勘探的“甜点”区。

参考文献
[1]
CAO Jian, XIA Liuwen, WANG Tingting, et al. An alkaline lake in the Late Paleozoic Ice Age (LPIA): A review and new insights into paleoenvironment and petroleum geology. EarthScience Reviews, 2020, 202: 103091.
[2]
匡立春, 唐勇, 雷德文, 等. 准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力. 石油勘探与开发, 2012, 39(6): 657-667.
KUANG Lichun, TANG Yong, LEI Dewen, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China. Petroleum Exploration and Development, 2012, 39(6): 657-667.
[3]
罗锦昌, 田继军, 马静辉, 等. 吉木萨尔凹陷吉页1井区二叠系芦草沟组沉积环境及有机质富集机理. 岩性油气藏, 2022, 34(5): 73-85.
LUO Jinchang, TIAN Jijun, MA Jinghui, et al. Sedimentary environment and organic matter enrichment mechanism of Permian Lucaogou Formation in Jiye-1 well area, Jimsar Sag. Lithologic Reservoirs, 2022, 34(5): 73-85.
[4]
王圣柱. 复杂构造区不同岩相页岩油散失量研究: 以准噶尔盆地博格达地区中二叠统芦草沟组为例. 科学技术与工程, 2020, 20(35): 14483-14491.
WANG Shengzhu. Dissipation of shale oil from different lithofacies in complex tectonic area: A case study of the Middle Permian Lucaogou Formation in Bogda area of Junggar Basin. Science Technology and Engineering, 2020, 20(35): 14483-14491.
[5]
王越, 林会喜, 张奎华, 等. 博格达地区中二叠统页岩层系古沉积环境. 地质论评, 2019, 65(增刊1): 93-94.
WANG Yue, LIN Huixi, ZHANG Kuihua, et al. Paleo-sedimentary environment of the Middle Permian shale strata in Bogda area. Geological Review, 2019, 65(Suppl 1): 93-94.
[6]
余琪祥, 曹倩, 路清华, 等. 准噶尔盆地非常规油气资源分布特征及勘探前景. 油气藏评价与开发, 2011, 1(4): 66-72.
YU Qixiang, CAO Qian, LU Qinghua, et al. The distribution characteristics and exploration prospect of the unconventional hydrocarbon resources in Junggar Basin. Reservoir Evaluation and Development, 2011, 1(4): 66-72.
[7]
于洪洲. 博格达山构造演化控制下的烃源岩生烃演化模式. 科学技术与工程, 2019, 19(4): 85-92.
YU Hongzhou. Hydrocarbon generation pattern of source rocks controlled by tectonic evolution of Bogda Mountain. Science Technology and Engineering, 2019, 19(4): 85-92.
[8]
蒋中发, 丁修建, 王忠泉, 等. 吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境. 岩性油气藏, 2020, 32(6): 109-119.
JIANG Zhongfa, DING Xiujian, WANG Zhongquan, et al. Sedimentary paleoenvironment of source rocks of Permian Lucaogou Formation in Jimsar Sag. Lithologic Reservoirs, 2020, 32(6): 109-119.
[9]
李二庭, 王剑, 李际, 等. 源储一体烃源岩精确评价: 以准噶尔盆地吉木萨尔凹陷芦草沟组为例. 石油实验地质, 2021, 43(2): 335-342.
LI Erting, WANG Jian, LI Ji, et al. Accurate evaluation of source rocks in source-reservoir integration: A case study of source rocks in Lucaogou Formation, Jimsar Sag, Junggar Basin. Petroleum Geology&Experiment, 2021, 43(2): 335-342.
[10]
杜金虎, 支东明, 李建忠, 等. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望. 石油勘探与开发, 2019, 46(2): 205-215.
DU Jinhu, ZHI Dongming, LI Jianzhong, et al. Major breakthrough of well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China. Petroleum Exploration and Development, 2019, 46(2): 205-215.
[11]
王正和, 余谦. 准南上二叠统芦草沟组非常规油气储层特征. 岩性油气藏, 2017, 29(5): 28-35.
WANG Zhenghe, YU Qian. Unconventional reservoir characteristics of Upper Permian Lucaogou Formation in southern margin of Junggar Basin. Lithologic Reservoirs, 2017, 29(5): 28-35.
[12]
李成博, 郭巍, 宋玉勤, 等. 新疆博格达山北麓油页岩成因类型及有利区预测. 吉林大学学报(地球科学版), 2006, 36(6): 949-953.
LI Chengbo, GUO Wei, SONG Yuqin, et al. The genetic type of the oil shale at the northern foot of Bogeda Mountain, Xinjiang and prediction for favorable areas. Journal of Jilin University (Earth Science Edition), 2006, 36(6): 949-953.
[13]
崔泽宏, 汤良杰, 王志欣. 博格达山南、北缘成盆过程演化及其对油气形成影响. 沉积学报, 2005, 25(1): 59-63.
CUI Zehong, TANG Liangjie, WANG Zhixin. Basin-formation evolution and its effect on petroleum formation in the southern and northern margins of Bogda. Acta Sedimentologica Sinica, 2005, 25(1): 59-63.
[14]
邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 中国致密油和致密气为例. 石油学报, 2012, 33(2): 173-187.
ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance. Acta Petrolei Sinica, 2012, 33(2): 173-187.
[15]
邹才能, 陶士振, 侯连华, 等. 非常规油气地质学. 北京: 地质出版社, 2014.
ZOU Caineng, TAO Shizhen, HOU Lianhua, et al. Unconventional oil and gas geology. Beijing: Geological Publishing House, 2014.
[16]
MEISSNER F F. Petroleum geology of the Bakken Formation Williston Basin, North Dakota and Montana. AAPG Bulletin, 1991, 303: 19-42.
[17]
CLARKSON C R, PEDERSEN P K. Tight oil production analysis: Adaptation of existing rate-transient analysis techniques[C]. Calgary: Unconventional Resources and International Petroleum Conference, 2010.
[18]
DENNE R A, HINOTE R E, BREYER J A. The CenomanianTuronian eagle ford group of south texas: Insights on timing and paleoceanographic conditions from geochemistry and micropaleontologic analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 413: 2-28.
[19]
MULLEN J. Petrophysical characterization of the Eagle Ford Shale in south Texas[C]. Calgary: Canadian Unconventional Resources and International Petroleum Conference, 2010.
[20]
张奎华, 宋明水, 曹忠祥, 等. 博格达地区中二叠统沉积环境与烃源岩特征. 断块油气田, 2021, 28(1): 9-13.
ZHANG Kuihua, SONG Mingshui, CAO Zhongxiang, et al. Sedimentary environment and the characteristics of hydrocarbon source rock of the Middle Permian in Bogda area. FaultBlock Oil&Gas Field, 2021, 28(1): 9-13.
[21]
林会喜, 王圣柱, 杨艳艳, 等. 博格达地区中二叠统芦草沟组页岩油储集特征. 断块油气田, 2020, 27(4): 418-423.
LIN Huixi, WANG Shengzhu, YANG Yanyan, et al. Shale oil reservoir characteristics of Middle Permian Lucaogou Formation in Bogda area. Fault-Block Oil&Gas Field, 2020, 27(4): 418-423.
[22]
ABARGHANI A, OSTADHASSAN M, GENTZIS T. Organofacies study of the Bakken source rock in North Dakota, USA, based on organic petrology and geochemistry. International Journal of Coal Geology, 2018, 188: 79-93.
[23]
王俞策, 曹剑, 陶柯宇, 等. 准噶尔盆地芦草沟组致密油系统油源对比与成藏非均质性研究. 南京大学学报(自然科学), 2020, 56(3): 322-337.
WANG Yuce, CAO Jian, TAO Keyu, et al. Oil-source correlation and accumulation heterogeneity of tight oil sin the Middle Permian Lucaogou Formation, Junggar Basin. Journal of Nanjing University (Natural Science), 2020, 56(3): 322-337.
[24]
孙自明. 新疆博格达山北缘大龙口地区构造特征与油气勘探前景. 现代地质, 2015, 29(1): 45-53.
SUN Ziming. Structural features and petroleum exploration prospective in Dalongkou area of thenorthern Bogda Mountain, Xinjiang. Geoscience, 2015, 29(1): 45-53.
[25]
闫林, 冉启全, 高阳, 等. 吉木萨尔凹陷芦草沟组致密油储层溶蚀孔隙特征及成因机理. 岩性油气藏, 2017, 29(3): 27-33.
YAN Lin, RAN Qiquan, GAO Yang, et al. Characteristics and formation mechanism of dissolved pores in tight oil reservoirs of Lucaogou Formation in Jimsar Sag. Lithologic Reservoirs, 2017, 29(3): 27-33.
[26]
杜小弟, 李锋, 邱海峻, 等. 准东博格达山山前带二叠系芦草沟组重油的发育特征及其指示意义. 吉林大学学报(地球科学版), 2016, 46(2): 368-378.
DU Xiaodi, LI Feng, QIU Haijun, et al. Characteristics of heavy oil hosted in Permian Lucaogou Formation discovered in Bogeda Mountain of Zhunggar Basin and its importance for further exploration. Journal of Jilin University (Earth Science Edition), 2016, 46(2): 368-378.
[27]
孙国智, 柳益群. 新疆博格达山隆升时间初步分析. 沉积学报, 2009, 27(3): 487-490.
SUN Guozhi, LIU Yiqun. The preliminary analysis of the uplift time of Bogda Mountain, Xinjiang, northwest China. Acta Sedimentologica Sinica, 2009, 27(3): 487-490.
[28]
张传恒, 刘典波, 张传林, 等. 新疆博格达山初始隆升时间的地层学标定. 地学前缘, 2005, 12(1): 294-302.
ZHANG Chuanheng, LIU Dianbo, ZHANG Chuanlin, et al. Stratigraphic constraints on the initial uplift age of Bogda Shan, Xinjiang, north-west China. Earth Science Frontiers, 2005, 12(1): 294-302.
[29]
顾连兴, 胡受奚, 于春水, 等. 博格达陆内碰撞造山带挤压-拉张构造转折期的侵入活动. 岩石学报, 2001, 17(2): 187-198.
GU Lianxing, HU Shouxi, YU Chunshui, et al. Intrusive activities during compression extension tectonic conversion in the Bogda intracontinental orogen. Acta Petrologica Sinica, 2001, 17(2): 187-198.
[30]
李欢, 邹灏, 李欣宇, 等. 准噶尔盆地东缘中侏罗统头屯河组层序地层与沉积演化. 沉积与特提斯地质, 2018, 38(1): 41-52.
LI Huan, ZOU Hao, LI Xinyu, et al. Sequence stratigraphy and sedimentary evolution of the Middle Jurassic Toutunhe Formation on the eastern margin of the Junggar Basin, Xinjiang. Sedimentary Geology and Tethyan Geology, 2018, 38(1): 41-52.
[31]
王越, 林会喜, 张奎华, 等. 博格达山周缘中二叠统芦草沟组与红雁池组沉积特征及演化. 沉积学报, 2018, 36(3): 500-509.
WANG Yue, LIN Huixi, ZHANG Kuihua, et al. Sedimentary characteristics and evolution of the Middle Permain Lucaogou Formation and Hongyanchi Formation on the periphery of Bogda Mountain. Acta Sedimentologica Sinica, 2018, 36(3): 500-509.
[32]
彭雪峰, 汪立今, 姜丽萍. 准噶尔盆地东南缘二叠系芦草沟组沉积环境分析. 新疆大学学报(自然科学版), 2011, 28(4): 395-400.
PENG Xuefeng, WANG Lijin, JIANG Liping, et al. Analysis of sedimentary environment of the Permian Lucaogou Formation in southeastern margin of the Junggar Basin. Journal of Xinjiang University (Natural Science Edition), 2011, 28(4): 395-400.
[33]
冯烁, 田继军, 孙铭赫, 等. 准噶尔盆地南缘芦草沟组沉积演化及其对油页岩分布的控制. 西安科技大学学报, 2015, 35(4): 436-443.
FENG Shuo, TIAN Jijun, SUN Minghe, et al. Distribution of the oil shale by sedimentary evolution in the Lucaogou Formation in southern margin of Junger Basin. Journal of Xi'an University of Science and Technology, 2015, 35(4): 436-443.
[34]
陈建平, 王绪龙, 邓春萍, 等. 准噶尔盆地南缘油气生成与分布规律-原油地球化学特征与分类. 石油学报, 2015, 36(11): 1316-1331.
CHEN Jianping, WANG Xulong, DENG Chunping, et al. Geochemical features and classification of crude oil in the southern margin of Junggar Basin, northwestern China. Acta Petrolei Sinica, 2015, 36(11): 1316-1331.
[35]
刘亮, 李江涛, 杨鹏涛, 等. 新疆博格达造山带石炭纪的构造属性: 来自辉长岩年代学与地球化学的证据. 中国地质, 2020, 47(3): 725-741.
LIU Liang, LI Jiangtao, YANG Pengtao, et al. The Carboniferous tectonic attributes of the Bogda orogenic belt in Xinjiang: Evidence from gabbro chronology and geochemistry. Geology in China, 2020, 47(3): 725-741.
[36]
孔垂显, 邱子刚, 卢志远, 等. 准噶尔盆地东部石炭系火山岩岩体划分. 岩性油气藏, 2017, 29(6): 15-22.
KONG Chuixian, QIU Zigang, LU Zhiyuan, et al. Division of Carboniferous volcanic rock mass in eastern Junggar Basin. Lithologic Reservoirs, 2017, 29(6): 15-22.
[37]
汪晓伟, 徐学义, 马中平, 等. 博格达造山带东段芨芨台子地区晚石炭世双峰式火山岩地球化学特征及其地质意义. 中国地质, 2015, 42(3): 553-569.
WANG Xiaowei, XU Xueyi, MA Zhongping, et al. Geochemical characteristics of the Late Carboniferous bimodal volcanic rocks in Jijitaizi area, eastern Bogda orogenic belt, and their geological significance. Geology in China, 2015, 42(3): 553-569.
[38]
PETERS K E, WALTERS C C, MOLDOWAN J M. The biomarker guide second edition. Cambridge: Cambridge University Press, 2005.
[39]
HAVEN H L T, ROHMER M, RULLKÖTTER J, et al. Tetrahymanol, the most likely precursor of gammacerane, occurs ubiquitously in marine sediments. Geochimica et Cosmochimica Acta, 1989, 53: 3073-3079.
[40]
SINNINGHE J S, KENIG F, KOOPMANS M P, et al. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 1995, 59: 1895-1900.
[41]
MOLDOWAN J M, SEIFERT W K, GALLEGOS E J. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 1985, 69(8): 1255-1268.
[42]
曲彦胜, 王圣柱, 朱凤云, 等. 准噶尔盆地北部富氮天然气特征及成因分析[C]. 重庆: 第十六届全国有机地球化学学术会议, 2017.
QU Yansheng, WANG Shengzhu, ZHU Fengyun, et al. Characteristics and genetic analysis of nitrogen rich natural gas in northern Junggar Basin[C]. Chongqing: The 16th National Conference on Organic Geochemistry, 2017.
[43]
张水昌, 梁狄刚, 张大江. 关于古生界烃源岩有机质丰度的评价标准. 石油勘探与开发, 2002, 29(2): 8-12.
ZHANG Shuichang, LIANG Digang, ZHANG Dajiang. Evaluation criteria for Paleozoic effective hydrocarbon source rocks. Petroleum Exploration and Development, 2002, 29(2): 8-12.
[44]
MAIER C, KLUIJVER A, AGIS M, et al. Dynamics of nutrients, total organic carbon, prokaryotes and viruses in onboard incubations of cold-water corals. Biogeosciences, 2011, 8: 2609-2620.
[45]
PEI Lixin, GAO Gang, GANG Wenzhe, et al. Organic matter enrichment in the first member of the Xiagou formation of the lower Cretaceous in the Jiuquan Basin, China. Acta Geochimica, 2016, 35: 95-103.
[46]
雷海艳, 郭佩, 孟颖, 等. 玛湖凹陷二叠系风城组页岩油储层孔隙结构及分类评价. 岩性油气藏, 2022, 34(3): 142-153.
LEI Haiyan, GUO Pei, MENG Ying, et al. Pore structure and classification evaluation of shale oil reservoirs of Permian Fengcheng Formation in Mahu Sag. Lithologic Reservoirs, 2022, 34(3): 142-153.
[47]
匡立春, 侯连华, 杨智, 等. 陆相页岩油储层评价关键参数及方法. 石油学报, 2021, 42(1): 1-14.
KUANG Lichun, HOU Lianhua, YANG Zhi, et al. Key parameters and methods of lacustrine shale oil reservoir characterization. Acta Petrolei Sinica, 2021, 42(1): 1-14.
[48]
汪新伟, 汪新文, 马永生. 新疆博格达山的构造演化及其与油气的关系. 现代地质, 2007, 21(1): 116-124.
WANG Xinwei, WANG Xinwen, MA Yongsheng. The tectonic evolution of Bogda Mountain, Xinjiang, northwest China and its relationship to oil and gas accumulation. Geoscience, 2007, 21(1): 116-124.
[49]
翟刚毅, 王玉芳, 刘国恒, 等. 中国二叠系海陆交互相页岩气富集成藏特征及前景分析. 沉积与特提斯地质, 2020, 40(3): 102-117.
ZHAI Gangyi, WANG Yufang, LIU Guoheng, et al. Enrichment and accumulation characteristics and prospect analysis of the Permian marine continental multiphase shale gas in China. Sedimentary Geology and Tethyan Geology, 2020, 40(3): 102-117.