岩性油气藏  2024, Vol. 36 Issue (3): 50-60       PDF    
×
川中地区蓬莱气田震旦系灯影组二段储层发育主控因素及分布规律
夏茂龙1, 张本健1, 曾乙洋1, 贾松1, 赵春妮1, 冯明友2, 李勇1, 尚俊鑫2    
1. 中国石油西南油气田公司 勘探开发研究院,成都 610041;
2. 西南石油大学 地球科学与技术学院,成都 610500
摘要: 结合岩心、薄片及分析测试等资料,对川中蓬莱气田震旦系灯影组二段储层的主控因素及分布规律进行了详细研究。研究结果表明:①蓬莱气田震旦系灯二段储层主要由凝块石白云岩、泡沫绵层白云岩及砂屑白云岩组成,储集空间包括孔隙、溶洞及裂缝,以残余格架孔和中小型溶洞为主,孔隙多发育于微生物黏结白云岩及颗粒白云岩中。灯二上亚段储层孔隙度为2.0%~11.0%,平均为4.43%,渗透率为0.005~10.000 mD,平均为1.190 mD;灯二下亚段储层孔隙度为2.00%~6.98%,平均为3.64%,渗透率为0.030 9~2.600 0 mD,平均为0.950 0 mD。②微生物丘滩体展布及准同生期岩溶作用、表生期岩溶作用共同控制了研究区灯二段储层的分布及品质,优质储层多发育于灯二上亚段中上部和灯二下亚段顶部。③研究区灯二下亚段总体属海进半旋回产物,仅上部发育孔洞/缝洞型储层,中部及下部储层欠发育。灯二上亚段多为海退半旋回产物,其1小层为次级海侵背景,丘滩体厚度薄,以孔隙型储层为主;2小层在海退背景下发育连片分布的丘滩体,储层厚,以孔洞型储层为主(多为Ⅱ类储层),为区内主力产气层段;3小层总体为海退晚期浅水台坪沉积,葡萄花边构造发育,岩溶改造作用较明显,储层多为缝洞叠加岩溶型储层(Ⅲ类储层)。
关键词: 微生物黏结白云岩    颗粒白云岩    微生物丘滩    准同生期岩溶    表生期岩溶    海进    海退    灯影组二段    震旦系    蓬莱气田    川中地区    
Main controlling factors and distribution of reservoirs of the second member of Sinian Dengying Formation in Penglai gas field, central Sichuan Basin
XIA Maolong1, ZHANG Benjian1, ZENG Yiyang1, JIA Song1, ZHAO Chunni1, FENG Mingyou2, LI Yong1, SHANG Junxin2    
1. Research Institute of Exploration and Development, PetroChina Southwest Oil & Gas Field Company, Chengdu 610041, China;
2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
Abstract: Based on data of rock cores, thin sections and analysis tests, a detailed study was conducted on the main controlling factors and distribution of the second member of Sinian Dengying Formation in Penglai gas field in central Sichuan Basin. The results show that: (1)The reservoirs of the second member of Sinian Dengying Formation in Penglai gas field are mainly composed of thrombolite dolomite, foam spongy dolomite and doloarenite. The reservoir space includes pores, caves and fractures, dominated by residual framework pores and small and medium-sized caves. The pores are mostly developed in microbial bonded dolomite and grain dolomite. The porosity of the reservoir in the upper Deng 2 member is 2.0%-11.0%, with an average of 4.43%, and the permeability is 0.005-10.000 mD, with an average of 1.19 mD. The porosity of the reservoir in the lower Deng 2 member is 2.00%-6.98%, with an average of 3.64%, and the permeability is 0.030 9-2.600 0 mD, with an average of 0.950 0 mD. (2)The distribution and quality of reservoirs of Deng 2 member in the study area are jointly controlled by the distribution of microbial mound shoal, quasi syngenetic karstification and supergene karstification. High-quality reservoirs are mostly developed in the upper and middle parts of the upper Deng 2 member and the top of the lower Deng 2 member.(3)The lower Deng 2 member in the study area is generally a product of semi cyclical marine transgression, with vuggy-fractured reservoirs only developed in the upper part and reservoir undeveloped in the middle and lower parts. The upper Deng 2 member is mostly a product of regression and semi cycle. No. 1 sublayer developed in a secondary transgression background, with thin mound shoal, dominated by porous reservoir. No. 2 sublayer developed contiguous mound shoal under regression, with thick reservoirs mainly composed of vuggy reservoirs(mostly type Ⅱ reservoirs), which is the main gas producing zone in the study area. The No. 3 sublayer is overall shallow water platform deposit in the late stage of regression, with well-developed botryoidal-lace shape structures and obvious karst transformation, dominated by karst reservoirs with superimposed fractures and caves(type Ⅲ reservoirs).
Key words: microbial bonded dolomite    grain dolomite    microbial mound shoal    quasi syngenetic karstification    supergene karstification    transgression    regression    the second member of Dengying Formation    Sinian    Penglai gas field    central Sichuan Basin    
0 引言

前寒武系为全球提供了近75% 的重要资源,所以深化前寒武系沉积及油气资源的研究不仅具有重要的经济价值,也是探究现今地质及生态系统的关键[1]。全球针对前寒武系油气的勘探开发以碎屑岩为主,碳酸盐岩相对较少[2-4]。鉴于微生物岩的发育与微生物繁殖密切相关的特殊性,微生物岩发育的控制因素较为复杂,因此,前寒武系微生物白云岩的研究多围绕白云岩成因及分布机理[5-6],尤其对微生物白云岩形成环境的研究较为深入[7-8]。然而前寒武系微生物岩遭受晚期多期成岩作用影响强烈,早期沉积组构消失殆尽,难以通过对早期沉积物进行精细分析;此外,微生物白云岩岩性垂向变化明显,强非均质性则进一步阻碍了对前寒武系微生物白云岩储集性能的有效评价。

四川盆地大规模天然气勘探开发始于20世纪60年代初期[9-10],多个层系均取得突破并显示出巨大的勘探潜力[11-17],但震旦系灯影组却因时代老、埋深大、成岩演化复杂等原因导致勘探难度大。近年来“德阳—安岳裂陷槽”边缘安岳气田的重大发现,对于深化四川盆地超深层碳酸盐岩多层系油气立体勘探具有重要意义。前期研究表明,四川盆地中部震旦系灯影组微生物白云岩储层在平面上多分布于“德阳—安岳裂陷槽”东西两侧的边缘带,而远离“槽缘带”地区的储层厚度则明显减小[18-20];纵向上优质储层更易在古岩溶界面附近或岩溶影响深度范围内发育[21]。古地貌、沉积环境、微生物原生结构[22-23]及发育规模对大面积微生物丘滩体的控制较为明显[24-25],海平面升降及构造事件对早期白云岩的成储规模约束明显[26],埋藏成岩作用及热液对储层改造明显[27-28],这些因素均导致灯影组储层时空分布及主控因素的复杂性。近期川中蓬莱气田震旦系灯影组二段油气勘探获得重大突破,但优质储层及油气富集层段差异明显。结合钻井、岩心、薄片及相关分析测试等资料,对川中蓬莱气田震旦系灯影组二段储层发育主控因素及优质储层分布规律进行系统研究,以期为优化该区勘探层系提供一定理论依据。

1 地质概况

川中蓬莱地区位于四川盆地中部,西达德阳,北至绵阳—仪陇,东抵遂宁—南充,南至乐至-安岳一带,构造位置处于四川盆地中部古隆起北部(图 1a)。蓬莱气田震旦系灯影组自下而上分为灯影组一段(灯一段)、二段、三段及四段。其中,灯影组三段、四段被剥蚀殆尽,灯影组二段(灯二段)与上覆寒武系麦地坪组砂质/硅质泥页岩不整合接触。灯一段岩性以浅灰、深灰色泥—粉晶白云岩为主,夹微生物白云岩及细晶白云岩;灯二段地层厚度为500~700 m,岩性以微生物白云岩及砂屑白云岩为主,夹泥晶、粉晶白云岩;上覆麦地坪组岩性以泥页岩为主,含硅质页岩与磷块岩。根据灯二段岩性、测井曲线及沉积旋回等特征,将灯影组二段划分为上亚段(灯二上亚段)及下亚段(灯二下亚段)。其中,灯二上亚段地层厚度为300~350 m,灯二下亚段地层厚度为270~310 m。灯二上亚段和下亚段按测井及岩性组合特征均可进一步划分出1,2,3小层(图 1b)。灯二段总体属三级海退旋回,上、下亚段分别属次级海侵、海退旋回,其地层界线处附近出现明显的岩性转换面(泥晶白云岩发育)且测井响应具有高自然伽马、高电阻率的特征。

下载原图 图 1 川中蓬莱气田区域沉积特征(a)及震旦系灯影组二段岩性地层综合柱状图(b) Fig. 1 Sedimentary characteristics(a)and stratigraphic column of the second member of Sinian Dengying Formation(b)in Penglai gas field, central Sichuan Basin

四川盆地是受多旋回成盆作用控制的多期叠合盆地[29],位于上扬子板块西侧。在Rodinia超大陆裂解与拼合演化背景下[30],全球大陆均发生大规模离散拉张,国内学者将此次发生在中国古陆的构造演化事件称为“兴凯地裂运动旋回”[31]。该运动导致华南扬子板块地壳广泛幕式上升,震旦系灯影组中晚期的桐湾运动导致灯影组遭受大面积剥蚀[32],形成灯影组二段顶部(桐湾运动Ⅰ幕)及灯影组四段顶部(桐湾运动Ⅱ幕)2个区域性不整合面[33-34],该期构造事件是区内灯影组形成“槽-台”沉积格局的基础[35-36]。桐湾运动导致灯影组二段剥蚀明显,且灯影组剥蚀程度自东向西逐渐增强,地层整体具“北东厚、南西薄”的趋势。

2 储层特征 2.1 岩石学特征

川中蓬莱气田灯二段储层岩石类型复杂(表 1),以微生物(藻)黏结白云岩、颗粒白云岩、晶粒白云岩(图 2a2e)为主,其次为角砾状白云岩及葡萄状白云岩(图 2f2h)。微生物(藻)黏结白云岩类储集岩主要为凝块石白云岩、泡沫绵层白云岩,其次为叠层石白云岩及微生物(藻)纹层白云岩;颗粒白云岩类储集岩以砂屑白云岩为主,其次为砾屑白云岩;晶粒白云岩类储层以粉—细晶白云岩为主,其次为泥晶白云岩。

下载CSV 表 1 川中蓬莱气田震旦系灯二段典型储集岩类及储集空间特征 Table 1 Typical reservoir rock types and reservoir space of the second member of Sinian Dengying Formation in Penglai gas field, central Sichuan Basin
下载原图 图 2 川中蓬莱气田震旦系灯二段典型储集岩宏观特征 (a)灰色凝块石白云岩,蜂窝状溶蚀孔洞发育,蓬探101井,5 731.82 m;(b)浅灰色藻纹层白云岩,顺层溶洞及针状孔发育,蓬探103井,5 729.76 m;(c)浅灰色泥—粉晶白云岩,见孤立溶洞(3×4 cm),蓬深4井,6 226.05 m;(d)深灰色砂/砾屑白云岩,高角度裂缝及溶孔发育,被沥青和白云石近全充填,见葡萄花边构造,中深103井,5 888.20 m;(e)浅灰色泥—粉晶白云岩,顺层及斜交溶蚀孔洞发育,被白云石、石英及沥青半充填,蓬深5井,5 790.91 m;(f)浅灰色角砾状泥—粉晶白云岩,见葡萄花边构造及斜交裂缝,中深103井,6 066.88 m;(g)浅灰色泥—粉晶白云岩,葡萄花边构造发育,见未被充填的残余孔洞,蓬深5井,5 802.11 m;(h)图 2g的截面图,葡萄花边构造发育,蓬深5井,井深5 802.11 m。 Fig. 2 Macro characteristics of reservoir rocks of the second member of Sinian Dengying Formation in Penglai gas field, central Sichuan Basin
2.2 储集空间类型

蓬莱气田灯二段主要储集空间类型为孔隙、溶洞及裂缝(表 1)。其中,孔隙以残余格架孔和溶蚀孔为主,粒间/粒内溶孔少见。孔隙多发育于微生物黏结白云岩及颗粒白云岩中,如凝块石白云岩、泡沫绵层白云岩及叠层石白云岩中多见残余格架孔,砂/砾屑白云岩中多见粒间/粒内溶孔(图 3)。溶洞在灯二段储层中较发育,且以小溶洞为主(图 2a2b2e3f),部分见大型溶洞(图 2e3f)。岩心溶洞统计表明,蓬莱气田灯二段小洞(洞径为2~5 mm)占比为83.1%,中洞占比为12.6%(洞径为5~20 mm),大洞占比为4.3%(洞径大于20 mm)。灯二段裂缝相对较发育,主要分布在各小层中上部,以高角度缝构造缝为主,断面平直,扩溶缝则多经淡水或地下水溶蚀,缝壁不平且部分呈港湾状,部分溶孔及溶洞与裂缝沟通,溶缝普遍被白云石或沥青半充填(图 2d)。

下载原图 图 3 川中蓬莱气田震旦系灯二段典型储集岩微观特征 (a)泡沫绵层白云岩,泡沫空腔内充填物被溶蚀,发育格架孔,蓬探1井,5 731.29 m,铸体薄片,单偏光;(b)泡沫绵层白云岩,泡沫空腔内被白云石及沥青半充填,发育残余格架孔,蓬探103井,5 948.00 m,铸体薄片,单偏光;(c)藻纹层白云岩,残余格架孔被白云石半充填,蓬深5井,5 678.66 m,铸体薄片,单偏光;(d)凝块石白云岩,残余溶洞被白云石半充填,蓬深5井,5 718.45 m,铸体薄片,单偏光;(e)凝块石白云岩,发育未被充填的格架孔,葡萄花边构造发育、见残余溶洞,蓬深4井,6 304.32 m,铸体薄片,单偏光;(f)凝块石白云岩,溶洞及粒间溶孔发育,蓬深4井,6 304.70 m,铸体薄片,单偏光;(g)砂屑粉晶白云岩,发育铸模孔、粒内溶孔,蓬深5井,5 638.08 m,铸体薄片,单偏光;(h)砂/砾屑粉晶白云岩,粒间溶孔发育,偶见铸模孔,中深103井,5 883.18 m,铸体薄片,单偏光;(i)粉—细晶白云岩,晶间孔发育,见残余沥青,中深103井,5 874.33 m,铸体薄片,单偏光。 Fig. 3 Microscopic characteristics of reservoir rocks of the second member of Sinian Dengying Formation in Penglai gas field, central Sichuan Basin
2.3 物性特征

蓬莱气田灯二上亚段储层岩心数据(样品数为120)分析表明,孔隙度为2.0%~11.0%,平均为4.43%,孔隙度为2.0%~6.0% 的样品占样品总数的79.6%;渗透率为0.005~10.000 mD,平均为1.19 mD。灯二下亚段储层岩心数据(样品数为36)分析表明,孔隙度为2.00%~6.98%,平均为3.64%,孔隙度为2.0%~6.0% 的样品占样品总数的97.4%;渗透率为0.030 9~2.600 0 mD,平均为0.95 mD,渗透率为0.1~10.0 mD的样品占样品总数的97.0%(图 4)。

下载原图 图 4 川中蓬莱气田震旦系灯二段储层孔隙度(a)及渗透率(b)分布直方图 Fig. 4 Distribution histogram of porosity(a)and permeability(b)of reservoirs of the second member of Sinian Dengying Formation in Penglai gas field, central Sichuan Basin
3 储层发育主控因素 3.1 微生物丘滩控制储层发育规模

川中蓬莱气田灯二段主要发育碳酸盐岩台地边缘相沉积,可细分为藻丘、颗粒滩、滩间海及台坪等微相。已有研究表明,川中—川北地区宽缓的台地边缘沉积背景有利于丘滩储集体的大规模、继承性发育[37],且研究区主要位于德阳—安岳裂陷槽东侧灯二段台缘带,具沉积相带优势。四川盆地灯影组沉积初期总体为相对宽缓的沉积背景,灯一段沉积期海侵形成一套泥晶白云岩为主的沉积,然后发生海退,发育大套微生物(藻)黏结白云岩[38]。在灯影组三级海平面下降背景下,蓬莱气田灯二段水体由早期的振荡性海进向海退转变,总体表现为相对海平面下降、水体变浅,灯二段沉积中—晚期藻丘发育(图 5a)。灯二下亚段总体属海侵半旋回产物,该期海平面约束下的1,2小层总体水体偏深,丘滩体不发育,3小层总体属次级海平面下降期产物,丘滩储层相对发育。相比而言,灯二上亚段总体属海退半旋回产物,次级海平面振荡性变浅导致灯二下亚段1小层为相对海侵产物,丘滩体厚度较小,2小层为灯二段主力产气层段,储层厚、滩体连片分布,3小层总体属海退晚期台坪沉积,储层发育相对欠佳。

下载原图 图 5 川中蓬莱气田震旦系灯二段沉积相对比剖面(a)及灯二上亚段(b)、下亚段(c)沉积相平面图 Fig. 5 Sedimentary facies profile(a)and distribution of upper section(b)and lower section(c)of the second member of Sinian Dengying Formation in Penglai gas field, central Sichuan Basin

沉积相分析表明,蓬莱气田灯二段微生物丘滩体纵向上发育、横向上连续性较好。以研究区蓬探1井、蓬探101井及蓬探106井为代表,丘地比(丘滩/地层厚度)均大于0.7,蓬探103井丘地比达0.68(图 5b5c)。此外,钻井资料及地震解释结果表明,蓬探1井、蓬探101井和蓬探103井灯二段地层厚度分别为635 m,574 m和659 m,丘滩相集中发育于沉积地貌高部位。高部位水体大多处于半局限—半开放环境,水体能量相对较低,盐度高,有利于喜氧喜盐菌大量发育并形成藻席[39]。这些微生物在有氧条件下可诱发碳酸盐沉淀[40-41],进而在大范围藻席基础上形成一定规模的藻丘相沉积。相对深水、水动力较高能环境的次级高点(中深103井一带)则有利于颗粒滩发育,而深水低能滩间或浅水台坪环境则以较为致密的泥—粉晶白云岩沉积为主。蓬莱气田灯二段虽总体位于微生物丘滩相对发育带,但灯二上、下亚段丘滩体平面分布仍存在一定差异:灯二下亚段丘滩发育区集中于南部蓬深3井一带,灯二上亚段丘滩体则集中于北部蓬探101—蓬探1—蓬探103—蓬探106井一带。

不同沉积相带物性特征统计分析(图 6a)表明,蓬莱气田灯二段典型微生物丘滩相、台坪相、滩间海沉积的平均孔隙度分别为3.39%,2.13%,0.52%,表明灯二段储层孔隙度与沉积环境相关明显,微生物丘滩体较台坪及滩间更易发育优质储层。此外,丘滩体累计厚度与储层厚度呈明显正相关(相关系数为0.793 1)(图 6b),亦指示丘滩发育规模可影响储层的发育程度,大规模的丘滩沉积体为优质储层发育的基础。

下载原图 图 6 川中蓬莱气田震旦系灯二段各沉积相平均孔隙度直方图(a)及丘滩相厚度与储层累计厚度相关性(b) Fig. 6 Average porosity histogram of sedimentary microfacies(a), and correlation between mound shoal thickness and reseroiv thickness(b)of the second member of Sinian Dengying Formation in Penglai gas field, central Sichuan Basin
3.2 岩溶作用改善储层品质

蓬莱气田灯二段沉积期微生物岩沉积固结后,次级海平面频繁下降导致地貌高部位的丘滩体暴露及遭受大气淡水淋滤,形成大量准同生期溶孔、溶沟(缝)及葡萄花边构造(图 7a7b)。灯二段沉积末期遭受桐湾运动Ⅰ幕影响,有利于表生期岩溶作用的发生,主要表现为灯二段顶部不整合面附近发生溶蚀垮塌,并于垂直渗流带及水平潜流带中形成溶缝、溶沟及溶洞,白云石胶结物半充填于溶蚀孔洞中(图 7c)。

下载原图 图 7 川中蓬莱气田震旦系灯二段岩溶及葡萄花边特征 (a)藻凝块白云岩,葡萄花边构造极其发育,蓬探103井,5 732.57 m;(b)泡沫绵层白云岩,葡萄花边构造发育,见明显纤状、叶片状白云石胶结物,残余孔,蓬探103井,5 720.20 m,铸体薄片,单偏光;(c)泥—粉晶白云岩,见溶塌角砾,溶沟被白云石完全充填,蓬探103井,5 717.22 m;(d)藻凝块白云岩,葡萄花边构造发育,见明显三期白云石胶结物,蓬探103井,5 749.53 m,单偏光;(e)藻凝块白云岩,葡萄花边构造发育,见明显3期白云石胶结物,Fe,Mn含量(10-6)变化如图,蓬探103井,5 749.53 m,正交光;(f)葡萄花边构造发育,见明显三期白云石胶结物,Na,K含量(10-6)及δ13C,δ18O值(‰ PDB)变化如图,蓬探103井,5 749.53 m,阴极发光。 Fig. 7 Karst and botryoidal-lace shape structure characteristics of the second member of Sinian Dengying Formation in Penglai gas field, central Sichuan Basin

岩心观察及岩心、岩屑薄片统计表明,葡萄花边构造在蓬莱气田灯二上亚段顶部和灯二下亚段顶部均较发育,在灯二上、下亚段中下部较少发育或不发育,反映了各亚段沉积期次级海平面向上逐渐变浅并频繁遭受大气淡水淋滤改造的特征(图 9)。葡萄花边构造3期胶结物分析表明,第一期、第二期白云石胶结物Na和K的含量偏高,阴极发光下第一期白云石胶结物发暗红色光,第二期白云石胶结物不发光。葡萄花边构造内第一期、第二期白云石胶结物的地球化学特征及阴极发光特征指示这2期胶结物形成于准同生阶段,或与海水及大气淡水的混合有关;第三期白云石胶结物氧同位素偏负,阴极发光下发亮红色光并具生长环带(图 7d7f),反映与埋藏环境中流体作用有关。此外,准同生期岩溶作用多表现在灯二段内部,大气淡水或混合水以粒间孔为介质对层状微生物白云岩发生的组构选择性溶蚀,形成顺层分布的孔洞及针孔。表生期岩溶主要发育于灯影组顶部不整合面附近,地表淡水渗流或地下水潜流以裂缝、层面为介质对块状微生物白云岩发生组构/非组构选择性溶蚀,其溶蚀孔洞、溶缝多呈连片发育。蓬探103井灯二取心段实测物性及测井解释成果表明,表生期岩溶作用形成的储层平均孔隙度为2.08%,微生物丘滩相平均孔隙度为3.68%,微生物丘滩叠加准同生期岩溶改造段储层平均孔隙度可达4.90%。各类储层平均孔隙度显示出“丘滩+准同生期岩溶型储层>丘滩型储层>表生岩溶型储层”的规律,指示准同生期岩溶叠加丘滩相为优质储层发育条件。

4 有利储层分布

沉积及储层横向对比分析表明,川中蓬莱气田震旦系灯二段储层分布受丘滩相发育影响明显,广泛发育于沉积地貌高部位,丘滩体发育区储层横向上连续性好,呈大面积广泛分布的特征;在低地貌部位则不发育或极少发育储层,岩性相对较致密,储层横向连续性较差;此外,台坪环境虽局部发育丘滩沉积,但储层厚度相对较小,总体不发育。储层垂向对比分析表明,灯二下亚段储层主要发育于灯二下亚段中上部,厚度为60~80 m。其中,Ⅰ类储层(6%≤φ < 8%)、Ⅱ类储层(4%≤φ < 6%)多集中于灯二下亚段顶部,中下部仅发育少量Ⅲ类储层(2%≤ φ < 4%)或不发育储层(图 8)。灯二上亚段储层在整个上亚段均有分布,其中,灯二上亚段下部储层厚度较小,具多期叠置特征,以Ⅲ类储层(2%≤φ < 4%)为主;中部储层厚度最大(可达130 m),是油气分布的主力层段,以Ⅰ类、Ⅱ类储层为主;灯二上亚段顶部储层段厚度为10~30 m,多表现为受桐湾运动改造的岩溶型储层,为Ⅱ类、Ⅲ类储层。

下载原图 图 8 川中蓬莱气田震旦系灯二段储层对比剖面(位置见图 1剖面P1-P2) Fig. 8 Reservoir profile of the second member of Sinian Dengying Formation in Penglai gas field, central Sichuan Basin

总体而言,沉积相及岩溶作用复合控制了蓬莱气田灯二段储层的分布及品质。灯二下亚段为海侵背景相对深水环境,储层多发育于灯二下亚段顶部,且下亚段储层整体连续性较差、厚度偏小,储集空间以晶间(溶)孔和粒内(溶)孔为主,局部可见大型溶洞,受后期成岩作用影响明显,孔隙度和渗透率均较差,整体致密,储集性能相对较差(图 4图 8)。灯二上亚段总体为海退背景下的浅水沉积环境,微生物丘滩体储层整体连续性好、厚度大,储集空间以残余格架孔洞为主,储层多为优质储层(图 4图 8)。此外,灯二上亚段储层集中发育于台地边缘带具有较高沉积地貌的区域,在地貌高位与次高位形成的丘滩相更易接受准同生期暴露带来的大气淡水淋滤,有利于孔隙发育及溶蚀扩大,形成丘滩体叠加葡萄花边形成的典型孔洞型优质储层,且后期的埋藏溶蚀作用也会对储集空间进行调整[42],最终形成以灯二上亚段2小层为主力气层的优质孔洞型储层。裂缝对灯二段各小层储层均有一定的改造作用,尤其是灯二下亚段3小层中凝块石白云岩及粉晶白云岩中裂缝发育,形成缝洞型储层(Ⅱ类储层);尽管灯二上亚段3小层总体并未处于有利沉积相带,但遭受表生期岩溶作用改造,亦可形成缝洞叠加岩溶型储层(Ⅲ类储层)。因此,在古地理格局控制的沉积相展布与岩溶作用等综合影响下,研究区灯二上亚段储层规模及性能总体优于灯二下亚段(图 8图 9)。

下载原图 图 9 川中蓬莱气田典型井震旦系灯二上亚段(a)及下亚段(b)储层综合柱状图 Fig. 9 Comprehensive reservoir column of upper section(a)and lower section(b)of the second member of Sinian Dengying Formation in Penglai gas field, central Sichuan Basin
5 结论

(1)川中蓬莱气田灯二段储集岩以微生物白云岩为主,次为砂屑白云岩及晶粒白云岩,储集空间类型以残余格架孔和中小型溶洞为主,裂缝部分发育,灯二上亚段储集性能优于下亚段。

(2)微生物丘滩体、准同生期及表生期岩溶作用是研究区灯二段储集层发育的主要控制因素。沉积期次级海平面振荡性变化有利于微生物丘滩体的发育,控制储集层发育规模;准同生期叠加表生期岩溶作用复合改造明显,有效改善储集层性能。

(3)研究区灯二段储层多发育于灯二上亚段中上部及灯二下亚段顶部。灯二下亚段总体发育相对薄层、呈局部点状分布的孔洞/缝洞型储层,灯二上亚段总体发育厚层、广布型孔洞型储层。灯二段上、下亚段各小层储层类型自下而上具孔隙型—孔洞型—缝洞型储层演化趋势,灯二上亚段储层发育程度优于下亚段。灯二上亚段规模性丘滩体叠加岩溶型储层及灯二下亚段裂缝改造型丘滩型储层为勘探开发重点。

参考文献
[1]
ALTERMANN W, CORCORAN P L. Precambrian sedimentary environments: A modern approach to ancient depositional systems. UK: Blackwell Science Ltd., 2002: 1-120.
[2]
KUZNETSOV V G. Riphean Hydrocarbon reservoirs of the Yurubchen-Tokhom zone, Lena-Tunguska province, NE Russia. Journal of Petroleum Geology, 1997, 20(4): 459-474. DOI:10.1111/j.1747-5457.1997.tb00926.x
[3]
DUTKIEWICZ A, VOLK H, RIDLEY J, et al. Precambrian inclusion oils in the Roper Group: A review[G]. Proceedings of the Central Australian Basins Symposium(CABS). Northern Territory Geological Survey Special Publication, 2007: 326-348.
[4]
GORTER J D, GREY K, HOCKING R M. The petroleum exploration potential of the Australian Infracambrian(Ediacaran) of the Amadeus and Officer Basins[R]. Australian Petroleum Production and Exploration Association(APPEA), 2007, 391-392.
[5]
TUCKER M E. Diagenesis, geochemistry, and origin of a Precambrian dolomite: The Beck Spring dolomite of eastern California. Journal of Sedimentary Research, 1983, 53(4): 1097-1119.
[6]
LOYD S J, CORSETTI F A. The origin of the millimeter-scale lamination in the Neoproterozoic lower Beck Spring dolomite: Implications for widespread, fine-scale, layer-parallel diagenesis in Precambrian carbonates. Journal of Sedimentary Research, 2010, 80(7): 678-687. DOI:10.2110/jsr.2010.063
[7]
HARWOOD C L, SUMNER D Y. Microbialites of the Neoproterozoic Beck Spring Dolomite, southern California. Sedimentology, 2011, 58(6): 1648-1673. DOI:10.1111/j.1365-3091.2011.01228.x
[8]
SHUSTER J, REITH F. Reflecting on gold geomicrobiology research: Thoughts and considerations for future endeavors. Minerals, 2018, 8(9): 401. DOI:10.3390/min8090401
[9]
冉隆辉, 谢姚祥, 王兰生. 从四川盆地解读中国南方海相碳酸盐岩油气勘探. 石油与天然气地质, 2006, 27(3): 289-294.
RAN Longhui, XIE Yaoxiang, WANG Lansheng. Understanding exploration of marine carbonate reservoirs in South China through Sichuan Basin. Oil & Gas Geology, 2006, 27(3): 289-294. DOI:10.3321/j.issn:0253-9985.2006.03.002
[10]
马永生, 蔡勋育, 赵培荣, 等. 四川盆地大中型天然气田分布特征与勘探方向. 石油学报, 2010, 31(3): 347-354.
MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. Distribution and further exploration of the large-medium sized gas fields in Sichuan Basin. Acta Petrolei Sinica, 2010, 31(3): 347-354.
[11]
金之钧, 蔡立国. 中国海相层系油气地质理论的继承与创新. 地质学报, 2007, 81(8): 1017-1024.
JIN Zhijun, CAI Liguo. Inheritance and Innovation of marine petroleum geological theory in China. Acta Geologica Sinica, 2007, 81(8): 1017-1024. DOI:10.3321/j.issn:0001-5717.2007.08.001
[12]
邹才能, 陶士振. 大油气区的内涵、分类、形成和分布. 石油勘探与开发, 2007, 34(1): 5-12.
ZOU Caineng, TAO Shizhen. Connotation, classification, formation and distribution of giant oil and gas province. Petroleum Exploration and Development, 2007, 34(1): 5-12.
[13]
杨荣军, 彭平, 张静, 等. 四川盆地奉节地区上古生界古隆起特征及地质意义. 岩性油气藏, 2021, 33(4): 1-9.
YANG Rongjun, PENG Ping, ZHANG Jing, et al. Characteristics and geological significance of Upper Paleozoic paleo-uplift in Fengjie area, Sichuan Basin. Lithologic Reservoirs, 2021, 33(4): 1-9.
[14]
文华国, 梁金同, 周刚, 等. 四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带. 岩性油气藏, 2022, 34(2): 1-16.
WEN Huaguo, LIANG Jintong, ZHOU Gang, et al. Sequencebased lithofacies paleogeography and favorable natural gas exploration areas of Cambrian Xixiangchi Formation in Sichuan Basin and its periphery. Lithologic Reservoirs, 2022, 34(2): 1-16.
[15]
张本健, 徐唱, 徐亮, 等. 四川盆地东北部三叠系飞三段沉积特征及油气地质意义. 岩性油气藏, 2022, 34(3): 154-163.
ZHANG Benjian, XU Chang, XU Liang, et al. Sedimentary characteristics and petroleum geological significance of the third member of Triassic Feixianguan Formation in northeastern Sichuan Basin. Lithologic Reservoirs, 2022, 34(3): 154-163.
[16]
杨喆, 钟大康, 杜本强, 等. 四川盆地蜀南地区嘉二段低孔低渗储层特征及控制因素. 岩性油气藏, 2014, 26(4): 81-87.
YANG Zhe, ZHONG Dakang, DU Benqiang, et al. Characteristics and controlling factors of low porosity and low permeability reservoir of the second member of Jialingjiang Formation in southern Sichuan Basin. Lithologic Reservoirs, 2014, 26(4): 81-87.
[17]
黄彦庆, 刘忠群, 王爱, 等. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布. 岩性油气藏, 2023, 35(2): 21-30.
HUANG Yanqing, LIU Zhongqun, WANG Ai, et al. Types and distribution of tight sandstone gas sweet spots of the third member of Upper Triassic Xujiahe Formation in Yuanba area, Sichuan Basin. Lithologic Reservoirs, 2023, 35(2): 21-30.
[18]
宋金民, 刘树根, 李智武, 等. 四川盆地上震旦统灯影组微生物碳酸盐岩储层特征与主控因素. 石油与天然气地质, 2017, 38(4): 741-752.
SONG Jinmin, LIU Shugen, LI Zhiwu, et al. Characteristics and controlling factors of microbial carbonate reservoirs in the Upper Sinian Dengying Formation in the Sichuan Basin, China. Oil & Gas Geology, 2017, 38(4): 741-752.
[19]
李勇, 王兴志, 冯明友, 等. 四川盆地北部及周缘地区震旦系灯影组二段、四段储集层特征及成因差异. 石油勘探与开发, 2019, 46(1): 52-64.
LI Yong, WANG Xingzhi, FENG Mingyou, et al. Reservoir characteristics and genetic differences between the second and fourth members of Sinian Dengying Formation in northern Sichuan Basin and its surrounding areas. Petroleum Exploration and Development, 2019, 46(1): 52-64.
[20]
金民东, 李毕松, 朱祥, 等. 四川盆地东北部元坝地区及周缘震旦系灯影组四段储集层特征及主控因素. 石油勘探与开发, 2020, 47(6): 1090-1099.
JIN Mindong, LI Bisong, ZHU Xiang, et al. Characteristics and main controlling factors of reservoirs in the fourth member of Sinian Dengying Formation in Yuanba and its peripheral area, northeastern Sichuan Basin, SW China. Petroleum Exploration and Development, 2020, 47(6): 1090-1099.
[21]
赵东方, 谭秀成, 罗文军, 等. 早成岩期岩溶特征及其对古老深层碳酸盐岩储层的成因启示: 以川中地区磨溪8井区灯影组四段为例. 石油学报, 2022, 43(9): 1236-1252.
ZHAO Dongfang, TAN Xiucheng, LUO Wenjun, et al. Karst characteristics at early diagenetic stage and their enlightenment for the origin of ancient deep carbonate reservoirs: A case study of the member 4 of Dengying Formation in Moxi 8 well area, central Sichuan. Acta Petrolei Sinica, 2022, 43(9): 1236-1252.
[22]
RIDING R. Calcareous algae and stromatolites. Berlin Heidelberg: Springer, 1991: 21-51.
[23]
AWRAMIK S M, SPRINKLE J. Proterozoic stromatolites: The first marine evolutionary biota. Historical Biology, 1999, 13(4): 241-253.
[24]
王良军. 川北地区灯影组四段优质储层特征及控制因素. 岩性油气藏, 2019, 31(2): 35-45.
WANG Liangjun. Characteristics and controlling factors of highquality reservoirs of the fourth member of Dengying Formation in northern Sichuan Basin. Lithologic Reservoirs, 2019, 31(2): 35-45.
[25]
周红飞, 戴鑫, 贾敏, 等. 川中古隆起北斜坡震旦系灯影组二段油气成藏特征. 岩性油气藏, 2022, 34(5): 130-138.
ZHOU Hongfei, DAI Xin, JIA Min, et al. Hydrocarbon accumulation characteristics of the second member of Sinian Dengying Formation in the north slope of central Sichuan paleouplift. Lithologic Reservoirs, 2022, 34(5): 130-138.
[26]
谢武仁, 杨威, 魏国齐, 等. 桐湾运动对四川盆地震旦系灯影组岩溶储层形成的控制作用. 地质科学, 2017, 52(1): 254-269.
XIE Wuren, YANG Wei, WEI Guoqi, et al. Controling of Tongwan Movement on the formation of Dengying karst reservoir in Sichuan Basin. Chinese Journal of Geology, 2017, 52(1): 254-269.
[27]
王国芝, 刘树根, 李娜, 等. 四川盆地北缘灯影组深埋白云岩优质储层形成与保存机制. 岩石学报, 2014, 30(3): 667-678.
WANG Guozhi, LIU Shugen, LI Na, et al. Formation and preservation mechanism of high quality reservoir in deep burial dolomite in the Dengying Formation on the northern margin of the Sichuan Basin. Acta Petrologica Sinica, 2014, 30(3): 667-678.
[28]
冯明友, 强子同, 沈平, 等. 四川盆地高石梯—磨溪地区震旦系灯影组热液白云岩证据. 石油学报, 2016, 37(5): 587-598.
FENG Mingyou, QIANG Zitong, SHEN Ping, et al. Evidences for hydrothermal dolomite of Sinian Dengying Formation in Gaoshiti-Moxi area, Sichuan Basin. Acta Petrolei Sinica, 2016, 37(5): 587-598.
[29]
何登发, 李德生, 童晓光. 中国多旋回叠合盆地立体勘探论. 石油学报, 2010, 31(5): 695-709.
HE Dengfa, LI Desheng, TONG Xiaoguang. Stereoscopic exploration model for multi-cycle superimposed basins in China. Acta Petrolei Sinica, 2010, 31(5): 695-709.
[30]
陆松年, 李怀坤, 陈志宏, 等. 新元古时期中国古大陆与罗迪尼亚超大陆的关系. 地学前缘, 2004, 11(2): 515-523.
LU Songnian, LI Huaikun, CHEN Zhihong, et al. Relationship between neoproterozoic cratons of China and the Rodinia. Earth Science Frontiers, 2004, 11(2): 515-523.
[31]
罗志立. 略论地裂运动与中国油气分布. 地球学报, 1984, 6(3): 93-101.
LUO Zhili. A discussion of taphrogenesis and hydrocarbon distribution in China. Acta Geoscientica Sinica, 1984, 6(3): 93-101.
[32]
李启桂, 李克胜, 周卓铸, 等. 四川盆地桐湾不整合面古地貌特征与岩溶分布预测. 石油与天然气地质, 2013, 34(4): 516-521.
LI Qigui, LI Kesheng, ZHOU Zhuozhu, et al. Palaeogeomorphology and karst distribution of Tongwan unconformity in Sichuan Basin. Oil & Gas Geology, 2013, 34(4): 516-521.
[33]
汪泽成, 姜华, 王铜山, 等. 四川盆地桐湾期古地貌特征及成藏意义. 石油勘探与开发, 2014, 41(3): 305-312.
WANG Zecheng, JIANG Hua, WANG Tongshan, et al. Paleogeomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation. Petroleum Exploration and Development, 2014, 41(3): 305-312.
[34]
李忠权, 刘记, 李应, 等. 四川盆地震旦系威远—安岳拉张侵蚀槽特征及形成演化. 石油勘探与开发, 2015, 42(1): 26-33.
LI Zhongquan, LIU Ji, LI Ying, et al. Formation and evolution of Weiyuan-Anyue extension-erosion groove in Sinian system, Sichuan Basin. Petroleum Exploration and Development, 2015, 42(1): 26-33.
[35]
文龙, 王文之, 李林娟, 等. 川西南部灯影组展布特征新认识及油气地质勘探意义. 中国石油勘探, 2020, 25(3): 56-65.
WEN Long, WANG Wenzhi, LI Linjuan, et al. New understandings of distribution characteristics of Sinian Dengying Formation in southwestern Sichuan Basin and its significance of oil and gas geological exploration. China Petroleum Exploration, 2020, 25(3): 56-65.
[36]
耿夏童, 邢凤存, 闫海军, 等. 四川盆地磨溪地区震旦系灯影组四段储层特征及勘探启示. 岩性油气藏, 2022, 34(6): 126-140.
GENG Xiatong, XING Fengcun, YAN Haijun, et al. Reservoir characteristics of the fourth member of Sinian Dengying Formation and its implications for oil and gas exploration in Moxi area, Sichuan Basin. Lithologic Reservoirs, 2022, 34(6): 126-140.
[37]
谢继容, 张自力, 钟原, 等. 四川盆地中部—北部地区灯影组二段天然气勘探新认识及潜力分析. 海相油气地质, 2022, 27(3): 225-235.
XIE Jirong, ZHANG Zili, ZHONG Yuan, et al. New understanding and potential analysis of natural gas exploration of the Dengying member 2 in central-northern area of Sichuan Basin. Marine Origin Petroleum Geology, 2022, 27(3): 225-235.
[38]
张健, 谢武仁, 谢增业, 等. 四川盆地震旦系岩相古地理及有利储集相带特征. 天然气工业, 2014, 34(3): 16-22.
ZHANG Jian, XIE Wuren, XIE Zengye, et al. Lithofacies palaeogeographic characteristics and favorable reservoir facies belts of the Sinian in the Sichuan Basin. Natural Gas Industry, 2014, 34(3): 16-22.
[39]
SÁNCHEZ-ROMÁN M, ROMANEK C S, FERNÁNDEZREMOLAR D C, et al. Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments. Chemical Geology, 2011, 281(3/4): 143-150.
[40]
THOMPSON J B, FERRIS F G. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 1990, 18(10): 995-998.
[41]
RIVADENEYRA M A, PARRAGA J, DELGADO R, et al. Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiology Ecology, 2004, 48(1): 39-46.
[42]
朱东亚, 张殿伟, 张荣强, 等. 中国南方地区灯影组白云岩储层流体溶蚀改造机制. 石油学报, 2015, 36(10): 1188-1198.
ZHU Dongya, ZHANG Dianwei, ZHANG Rongqiang, et al. Fluid alteration mechanism of dolomite reservoirs in Dengying Formation, South China. Acta Petrolei Sinica, 2015, 36(10): 1188-1198.